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Let f be analytic self-map of D = {z : |z| < 1}

n-th iterate of f fn = f ◦ . . . ◦ f︸ ︷︷ ︸
n times

By Schwarz’s lemma, f is a contraction in the pseudo-hyperbolic
metric

d(z,w) =

∣∣∣∣ z − w
1− wz

∣∣∣∣
Theorem (Denjoy-Wolff)
If a self-map of the disk f is not an elliptic automorphism, then there
exist a unique point p ∈ D such that the sequence fn(z) converges
uniformly on compact subsets to p.
if p ∈ D, then f (p) = p and |f ′(p)| < 1
if p ∈ ∂D, then f (p) = p and 0 < f ′(p) ≤ 1 in the sense of
non-tangential limits
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The point p is called the Denjoy-Wolff point of f .

Cases:
1.p ∈ D f is called elliptic

2.p ∈ ∂D, f ′(p) < 1 hyperbolic

3.p ∈ ∂D, f ′(p) = 1 parabolic
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Parabolic case in the disk (or half-plane)
Consider a forward orbit

zn = fn(z0) := f ◦ . . . ◦ f︸ ︷︷ ︸
n times

(z0)

By Schwarz’s lemma d(zn, zn+1) ≤ d(zn−1, zn), and the
pseudo-hyperbolic step dn := d(zn, zn+1) must have a limit:
dn −−−→n→∞

b

Definition
We will call a sequence {zn} a zero step (resp. non-zero step)
sequence if b = 0 (resp. b > 0).

Another model: right-half plane H := {z | Re z > 0}, biholomorphically
equivalent to the unit disk D.
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Theorem (Pommerenke)
Consider f a parabolic self-map of H with Denjoy-Wolff point∞, and
define zn = xn + iyn := fn(1),

gn(z) :=
fn(z)− iyn

xn
.

Then the limit g(z) = lim
n→∞

gn(z) exists locally uniformly and

g(f (z)) = φ(g(z)) ∀z ∈ H,

and
φ(z) = z + ib (vertical translation) if {zn} has non-zero step;
φ(z) = z and g(z) ≡ 1 (trivial conjugation) if {zn} has zero step.
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Corollary 1.
The step does not depend on the choice of the sequence and depends
on map only; i.e. for a given parabolic map either all orbits have zero
step or all orbits have non-zero step.

Thus we can classify parabolic maps of the disk (or a half-plane) as
parabolic zero-step and parabolic non-zero step maps.

Corollary 2.
In parabolic non-zero-step case in H,

arg zn −−−→n→∞
±π

2

i.e. orbits converge to the Denjoy-Wolff point tangentially to the
boundary.
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Theorem (Baker, Pommerenke)
Let f be parabolic zero-step map of H with Denjoy-Wolff point infinity,
then there exists h : H→ C such that

h(f (z)) = h(z) + 1 ∀z ∈ H,

i.e. f is conjugated to a horizontal shift in the plane.

Orbits in parabolic zero-step case may converge tangentially as well as
non-tangentially.

Conjecture 1.
Let f be a parabolic zero-step map of H with Denjoy-Wolff point infinity,
then there exists direction θ ∈ [−π/2, π/2] such that for any orbit {zn}

arg zn −−−→n→∞
θ.

Olena Ostapyuk (Northern Iowa) Parabolic dynamics in the disk and in the ball 03-30-2012 8 / 19



Theorem (Baker, Pommerenke)
Let f be parabolic zero-step map of H with Denjoy-Wolff point infinity,
then there exists h : H→ C such that

h(f (z)) = h(z) + 1 ∀z ∈ H,

i.e. f is conjugated to a horizontal shift in the plane.

Orbits in parabolic zero-step case may converge tangentially as well as
non-tangentially.

Conjecture 1.
Let f be a parabolic zero-step map of H with Denjoy-Wolff point infinity,
then there exists direction θ ∈ [−π/2, π/2] such that for any orbit {zn}

arg zn −−−→n→∞
θ.

Olena Ostapyuk (Northern Iowa) Parabolic dynamics in the disk and in the ball 03-30-2012 8 / 19



Theorem (Baker, Pommerenke)
Let f be parabolic zero-step map of H with Denjoy-Wolff point infinity,
then there exists h : H→ C such that

h(f (z)) = h(z) + 1 ∀z ∈ H,

i.e. f is conjugated to a horizontal shift in the plane.

Orbits in parabolic zero-step case may converge tangentially as well as
non-tangentially.

Conjecture 1.
Let f be a parabolic zero-step map of H with Denjoy-Wolff point infinity,
then there exists direction θ ∈ [−π/2, π/2] such that for any orbit {zn}

arg zn −−−→n→∞
θ.

Olena Ostapyuk (Northern Iowa) Parabolic dynamics in the disk and in the ball 03-30-2012 8 / 19



Multi-dimensional case

f is self-map of N-dimensional unit ball BN =
{

Z ∈ CN : ‖Z‖ < 1
}

.
Schwarz’s lemma still holds in BN , with pseudo-hyperbolic distance
defined as

dBN (Z ,W ) :=

 |1− 〈Z ,W 〉|2(
1− ‖Z‖2

)(
1− ‖W‖2

)
1/2

.

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (Hervé, MacCluer, 1983)
If f has no fixed points in BN , then fn converges uniformly on compacta

to p ∈ ∂BN , the number c := lim inf
Z→p

1− ‖f (Z )‖
1− ‖Z‖

∈ (0,1] is a multiplier of

f at p.
f is called hyperbolic if c < 1 and parabolic if c = 1.
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An analog of the half-plane H in several dimensions is

Siegel domain (or Siegel half-space)

HN = {(z,w) ∈ C× CN−1 : Re z > ‖w‖2},

which is biholomorfically equivalent to BN via

Cayley transform:
C : BN → HN

C((z,w)) =

(
1 + z
1− z

,
w

1− z

)
C−1((z,w)) =

(
z − 1
z + 1

,
2w

z + 1

)
.
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For parabolic maps of the ball, zero and non-zero step cases are
well-defined only for sequences.

The question whether the same map can have sequences of both
types is still open.

Conjecture 2.
Let f a self map of BN of parabolic type. If the step
dBN (fn(Z0), fn+1(Z0))→ 0 for some Z0 ∈ BN , then
dBN (fn(Z ), fn+1(Z ))→ 0 for all Z ∈ BN .
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Definition
The Koranyi region K (X ,M) of vertex X ∈ ∂BN and amplitude M > 1
is the set

K (X ,M) =

{
Z ∈ BN

∣∣∣∣ |1− 〈Z ,X 〉|1− ‖Z‖
< M

}
.

When N = 1, it is the usual Stolz angle in the disk; but for N > 1 the
region is tangent to the boundary of the ball along some directions.

Definition
For X ∈ ∂BN , a sequence Zn → X is called special if

lim
n→∞

‖Zn − 〈Zn,X 〉X‖2

1− ‖ 〈Zn,X 〉X‖2
= 0,

and restricted if it is special and its orthogonal projection 〈Zn,X 〉X is
non-tangential.

Olena Ostapyuk (Northern Iowa) Parabolic dynamics in the disk and in the ball 03-30-2012 12 / 19



Definition
The Koranyi region K (X ,M) of vertex X ∈ ∂BN and amplitude M > 1
is the set

K (X ,M) =

{
Z ∈ BN

∣∣∣∣ |1− 〈Z ,X 〉|1− ‖Z‖
< M

}
.

When N = 1, it is the usual Stolz angle in the disk; but for N > 1 the
region is tangent to the boundary of the ball along some directions.

Definition
For X ∈ ∂BN , a sequence Zn → X is called special if

lim
n→∞

‖Zn − 〈Zn,X 〉X‖2

1− ‖ 〈Zn,X 〉X‖2
= 0,

and restricted if it is special and its orthogonal projection 〈Zn,X 〉X is
non-tangential.

Olena Ostapyuk (Northern Iowa) Parabolic dynamics in the disk and in the ball 03-30-2012 12 / 19



non-tangential⇒ restricted⇒ lies in a Koranyi region

Theorem (O.O.)
If the sequence of forward iterates {Zn}∞n=1 for parabolic self-map of
the unit ball is restricted, then it must have zero step, i.e.
dBN (Zn,Zn+1)→ 0.

In particular, every non-zero-step sequence must converge
tangentially.
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Known examples

of parabolic maps in HN are:

Example 1: Heisenberg translations

(z,w) 7−→ (z + z0 + 2 〈w ,w0〉 ,w + w0) for some (z0,w0) ∈ ∂HN , i.e.
Re z0 = ‖w0‖2.
They are parabolic automorphisms of HN and thus have non-zero step.

Example 2: Generalized Heisenberg translations

(z,w) 7−→ (z + z0 + 2 〈w ,w0〉 ,w + w0) with Re z0 ≥ ‖w0‖2.
They have zero step unless Re z0 = ‖w0‖2.
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Example 3: Parabolic linear-fractional maps of HN

(linear-fractional self-maps of the ball, transferred to HN ).

f (Z ) :=
AZ + B〈
Z ,C

〉
+ d

with f (BN) ⊆ BN , where A is N × N-matrix, B,C ∈ CN and d ∈ C.

Theorem (Bayart)
Parabolic linear-fractional maps that do not fix any non-trivial affine
subset of BN are conjugated to generalized Heisenberg translations.
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Example 4. (O.O.):
Given one-dimensional φ : H→ H of hyperbolic or parabolic type, with
the Denjoy-Wolff point∞,
construct f (z,w) := (φ(z − w2) + w2,w). Then:
f is the self-map of H2 with the Denjoy-Wolff point∞ and has the
same type and same multiplier at∞ as φ.
Moreover, all forward orbits have zero (resp. non-zero) step, if φ is
parabolic zero (resp. non-zero) step map.
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Example 5. (O.O.):
Given one-dimensional φ : H→ H of parabolic type, with the
Denjoy-Wolff point∞, construct

f (z,w) := (φ(z) + z0 + 2 〈w ,w0〉 ,w + w0)

for some (z0,w0) ∈ ∂HN .
Then f is the self-map of HN with the Denjoy-Wolff point∞ of parabolic
type.
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Example 6. (Bayart) Maps with some regularity at the
Denjoy-Wolff point
Dn+ε: parabolic maps of B2 that can be expanded near the
Denjoy-Wolff point up to a certain order.

Depending on n and the first derivative matrix, they can be conjugated
to various generalized Heisenberg translations, in particular:

If n = 5 and the matrix is non-diagonalizable, model map is
(z,w) 7−→ (z + z0 + 2 〈w ,w0〉 ,w + w0)

If n = 6 and the matrix is diagonalizable, model map is z 7−→ z + b
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Thank you!
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