Parabolic dynamics in the disk and in the ball

Olena Ostapyuk

Department of Mathematics University of Northern Iowa

AMS Spring Central Sectional Meeting University of Kansas, Lawrence, KS

- Tel - Se

Introduction

- Parabolic case in the disk
- Parabolic maps of the ball
- 4 Examples and Special Cases

A b

- 2 Parabolic case in the disk
- 3 Parabolic maps of the ball

- 2 Parabolic case in the disk
- 3 Parabolic maps of the ball

H 5

n-th iterate of $f f_n = \underbrace{f \circ \ldots \circ f}_{f \circ \ldots \circ f}$

n times

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then f(p) = p and |f'(p)| < 1if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \le 1$ in the sense of non-tangential limits

n-th iterate of $f f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then f(p) = p and |f'(p)| < 1if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \le 1$ in the sense of non-tangential limits

n-th iterate of $f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then f(p) = p and |f'(p)| < 1if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \le 1$ in the sense of non-tangential limits

n-th iterate of $f f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then f(p) = p and |f'(p)| < 1if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Cases: 1. $p \in \mathbb{D}$ f is called elliptic

2.*p* ∈ ∂ D, f'(p) < 1 hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

Cases: 1. $p \in \mathbb{D}$ *f* is called elliptic

2.*p* ∈ ∂ D, f'(p) < 1 hyperbolic

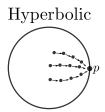
 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

A (10) > A (10) > A (10)

Cases: 1. $p \in \mathbb{D}$ *f* is called elliptic

 $2. p \in \partial \mathbb{D}, f'(p) < 1$ hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

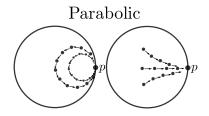


A (10) A (10)

Cases: 1. $p \in \mathbb{D}$ *f* is called elliptic

 $2.p \in \partial \mathbb{D}, f'(p) < 1$ hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

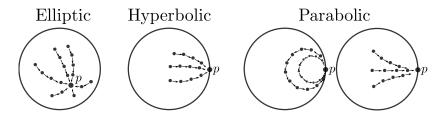


A (10) > A (10) > A (10)

Cases: 1. $p \in \mathbb{D}$ *f* is called elliptic

 $2. p \in \partial \mathbb{D}, f'(p) < 1$ hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic



A (10) A (10)

Consider a forward orbit

$$z_n = f_n(z_0) := \underbrace{f \circ \ldots \circ f}_{n \text{ times}}(z_0)$$

By Schwarz's lemma $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, and the **pseudo-hyperbolic step** $d_n := d(z_n, z_{n+1})$ must have a limit: $d_n \xrightarrow[n \to \infty]{} b$

Definition

We will call a sequence $\{z_n\}$ a zero step (resp. non-zero step) sequence if b = 0 (resp. b > 0).

Another model: right-half plane $\mathbb{H} := \{z \mid \text{Re} z > 0\}$, biholomorphically equivalent to the unit disk \mathbb{D} .

Consider a forward orbit

$$z_n = f_n(z_0) := \underbrace{f \circ \ldots \circ f}_{n \text{ times}}(z_0)$$

By Schwarz's lemma $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, and the **pseudo-hyperbolic step** $d_n := d(z_n, z_{n+1})$ must have a limit: $d_n \xrightarrow[n \to \infty]{} b$

Definition

We will call a sequence $\{z_n\}$ a zero step (resp. non-zero step) sequence if b = 0 (resp. b > 0).

Another model: right-half plane $\mathbb{H} := \{z \mid \text{Re} z > 0\}$, biholomorphically equivalent to the unit disk \mathbb{D} .

Consider a forward orbit

$$z_n = f_n(z_0) := \underbrace{f \circ \ldots \circ f}_{n \text{ times}}(z_0)$$

By Schwarz's lemma $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, and the **pseudo-hyperbolic step** $d_n := d(z_n, z_{n+1})$ must have a limit: $d_n \xrightarrow[n \to \infty]{} b$

Definition

We will call a sequence $\{z_n\}$ a zero step (resp. non-zero step) sequence if b = 0 (resp. b > 0).

Another model: right-half plane $\mathbb{H} := \{z \mid \text{Re} z > 0\}$, biholomorphically equivalent to the unit disk \mathbb{D} .

Consider a forward orbit

$$z_n = f_n(z_0) := \underbrace{f \circ \ldots \circ f}_{n \text{ times}}(z_0)$$

By Schwarz's lemma $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, and the **pseudo-hyperbolic step** $d_n := d(z_n, z_{n+1})$ must have a limit: $d_n \xrightarrow[n \to \infty]{} b$

Definition

We will call a sequence $\{z_n\}$ a zero step (resp. non-zero step) sequence if b = 0 (resp. b > 0).

Another model: right-half plane $\mathbb{H} := \{z \mid \text{Re } z > 0\}$, biholomorphically equivalent to the unit disk \mathbb{D} .

Theorem (Pommerenke)

Consider f a parabolic self-map of \mathbb{H} with Denjoy-Wolff point ∞ , and define $z_n = x_n + iy_n := f_n(1)$,

$$g_n(z):=\frac{f_n(z)-iy_n}{x_n}$$

Then the limit $g(z) = \lim_{n \to \infty} g_n(z)$ exists locally uniformly and

$$g(f(z)) = \phi(g(z)) \quad \forall z \in \mathbb{H},$$

and

φ(z) = z + ib (vertical translation) if {z_n} has non-zero step;
φ(z) = z and g(z) ≡ 1 (trivial conjugation) if {z_n} has zero step.

Theorem (Pommerenke)

Consider f a parabolic self-map of \mathbb{H} with Denjoy-Wolff point ∞ , and define $z_n = x_n + iy_n := f_n(1)$,

$$g_n(z):=\frac{f_n(z)-iy_n}{x_n}$$

Then the limit $g(z) = \lim_{n \to \infty} g_n(z)$ exists locally uniformly and $g(f(z)) = \phi(g(z)) \quad \forall z \in \mathbb{H},$

and

φ(z) = z + ib (vertical translation) if {z_n} has non-zero step;
φ(z) = z and g(z) ≡ 1 (trivial conjugation) if {z_n} has zero step.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Pommerenke)

Consider f a parabolic self-map of \mathbb{H} with Denjoy-Wolff point ∞ , and define $z_n = x_n + iy_n := f_n(1)$,

$$g_n(z):=\frac{f_n(z)-iy_n}{x_n}$$

Then the limit $g(z) = \lim_{n \to \infty} g_n(z)$ exists locally uniformly and

$$g(f(z)) = \phi(g(z)) \quad \forall z \in \mathbb{H},$$

and

φ(z) = z + ib (vertical translation) if {z_n} has non-zero step;
φ(z) = z and g(z) ≡ 1 (trivial conjugation) if {z_n} has zero step.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary 1.

The step does not depend on the choice of the sequence and depends on map only; i.e. for a given parabolic map either all orbits have zero step or all orbits have non-zero step.

Thus we can classify parabolic maps of the disk (or a half-plane) as **parabolic zero-step** and **parabolic non-zero step** maps.

Corollary 2.

In parabolic non-zero-step case in \mathbb{H} ,

$$\arg z_n \xrightarrow[n \to \infty]{} \pm \frac{\pi}{2}$$

i.e. orbits converge to the Denjoy-Wolff point tangentially to the boundary.

Corollary 1.

The step does not depend on the choice of the sequence and depends on map only; i.e. for a given parabolic map either all orbits have zero step or all orbits have non-zero step.

Thus we can classify parabolic maps of the disk (or a half-plane) as **parabolic zero-step** and **parabolic non-zero step** maps.

Corollary 2. In parabolic non-zero-step case in \mathbb{H} ,

$$\operatorname{arg} z_n \xrightarrow[n \to \infty]{} \pm \frac{\pi}{2}$$

i.e. orbits converge to the Denjoy-Wolff point tangentially to the boundary.

Corollary 1.

The step does not depend on the choice of the sequence and depends on map only; i.e. for a given parabolic map either all orbits have zero step or all orbits have non-zero step.

Thus we can classify parabolic maps of the disk (or a half-plane) as **parabolic zero-step** and **parabolic non-zero step** maps.

Corollary 2.

In parabolic non-zero-step case in \mathbb{H} ,

$$\arg z_n \xrightarrow[n \to \infty]{} \pm \frac{\pi}{2}$$

i.e. orbits converge to the Denjoy-Wolff point tangentially to the boundary.

Theorem (Baker, Pommerenke)

Let f be parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists $h : \mathbb{H} \to \mathbb{C}$ such that

$$h(f(z)) = h(z) + 1 \quad \forall z \in \mathbb{H},$$

i.e. f is conjugated to a horizontal shift in the plane.

Orbits in parabolic zero-step case may converge tangentially as well as non-tangentially.

Conjecture 1.

Let f be a parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists direction $\theta \in [-\pi/2, \pi/2]$ such that for any orbit $\{z_n\}$

$$\operatorname{arg} Z_n \xrightarrow[n \to \infty]{} \theta.$$

Theorem (Baker, Pommerenke)

Let f be parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists $h : \mathbb{H} \to \mathbb{C}$ such that

$$h(f(z)) = h(z) + 1 \quad \forall z \in \mathbb{H},$$

i.e. f is conjugated to a horizontal shift in the plane.

Orbits in parabolic zero-step case may converge tangentially as well as non-tangentially.

Conjecture 1.

Let f be a parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists direction $\theta \in [-\pi/2, \pi/2]$ such that for any orbit $\{z_n\}$

$$\operatorname{arg} Z_n \xrightarrow[n \to \infty]{} \theta.$$

Theorem (Baker, Pommerenke)

Let f be parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists $h : \mathbb{H} \to \mathbb{C}$ such that

$$h(f(z)) = h(z) + 1 \quad \forall z \in \mathbb{H},$$

i.e. f is conjugated to a horizontal shift in the plane.

Orbits in parabolic zero-step case may converge tangentially as well as non-tangentially.

Conjecture 1.

Let f be a parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists direction $\theta \in [-\pi/2, \pi/2]$ such that for any orbit $\{z_n\}$

$$\arg z_n \xrightarrow[n \to \infty]{n \to \infty} \theta.$$

Multi-dimensional case

f is self-map of *N*-dimensional unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : ||Z|| < 1\}.$

Schwarz's lemma still holds in \mathbb{B}^N , with pseudo-hyperbolic distance defined as

$$d_{\mathbb{B}^N}(Z,W):=\left(rac{\left|1-\langle Z,W
ight
angle
ight|^2}{\left(1-\left\|Z
ight\|^2
ight)\left(1-\left\|W
ight\|^2
ight)}
ight)^{1/2}.$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (Hervé, MacCluer, 1983)

If *f* has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of *f* at *p*.

f is called hyperbolic if c < 1 and parabolic if c = 1.

Multi-dimensional case

f is self-map of *N*-dimensional unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : ||Z|| < 1\}$. Schwarz's lemma still holds in \mathbb{B}^N , with pseudo-hyperbolic distance defined as

$$d_{\mathbb{B}^N}(Z,W) := \left(rac{\left|1-\langle Z,W
angle
ight|^2}{\left(1-\left\|Z
ight\|^2
ight)\left(1-\left\|W
ight\|^2
ight)}
ight)^{1/2}.$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (Hervé, MacCluer, 1983)

If *f* has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of *f* at *p*.

f is called hyperbolic if c < 1 and parabolic if c = 1.

Multi-dimensional case

f is self-map of *N*-dimensional unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : ||Z|| < 1\}$. Schwarz's lemma still holds in \mathbb{B}^N , with pseudo-hyperbolic distance defined as

$$d_{\mathbb{B}^N}(Z,W) := \left(rac{\left|1-\langle Z,W
angle
ight|^2}{\left(1-\left\|Z
ight\|^2
ight) \left(1-\left\|W
ight\|^2
ight)}
ight)^{1/2}.$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (Hervé, MacCluer, 1983)

If *f* has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of *f* at *p*.

f is called hyperbolic if c < 1 and parabolic if c = 1.

An analog of the half-plane \mathbb{H} in several dimensions is

Siegel domain (or Siegel half-space)

$$\mathbb{H}^{N} = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : \operatorname{\mathsf{Re}} z > \|w\|^{2}\},\$$

which is biholomorfically equivalent to \mathbb{B}^N via

Cayley transform:

 $\mathcal{C}:\mathbb{B}^N\to\mathbb{H}^N$

$$\mathcal{C}((z,w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad \mathcal{C}^{-1}((z,w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

An analog of the half-plane \mathbb{H} in several dimensions is

Siegel domain (or Siegel half-space)

$$\mathbb{H}^{N} = \{(z, w) \in \mathbb{C} imes \mathbb{C}^{N-1} : \operatorname{\mathsf{Re}} z > \|w\|^{2}\},$$

which is biholomorfically equivalent to \mathbb{B}^N via

Cayley transform:

 $\mathcal{C}:\mathbb{B}^N\to\mathbb{H}^N$

$$\mathcal{C}((z,w)) = \left(\frac{1+z}{1-z},\frac{w}{1-z}\right) \quad \mathcal{C}^{-1}((z,w)) = \left(\frac{z-1}{z+1},\frac{2w}{z+1}\right).$$

For parabolic maps of the ball, zero and non-zero step cases are well-defined only **for sequences**.

The question whether the same map can have sequences of both types is still open.

Conjecture 2.

Let f a self map of \mathbb{B}^N of parabolic type. If the step $d_{\mathbb{B}^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0$ for some $Z_0 \in \mathbb{B}^N$, then $d_{\mathbb{B}^N}(f_n(Z), f_{n+1}(Z)) \to 0$ for all $Z \in \mathbb{B}^N$.

For parabolic maps of the ball, zero and non-zero step cases are well-defined only **for sequences**.

The question whether the same map can have sequences of both types is still open.

Conjecture 2.

Let f a self map of \mathbb{B}^N of parabolic type. If the step $d_{\mathbb{B}^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0$ for some $Z_0 \in \mathbb{B}^N$, then $d_{\mathbb{B}^N}(f_n(Z), f_{n+1}(Z)) \to 0$ for all $Z \in \mathbb{B}^N$.

A (10) A (10)

Definition

The Koranyi region K(X, M) of vertex $X \in \partial \mathbb{B}^N$ and amplitude M > 1 is the set

$$\mathcal{K}(X, M) = \left\{ Z \in \mathbb{B}^N \left| rac{|1 - \langle Z, X
angle|}{1 - \|Z\|} < M
ight\}.$$

When N = 1, it is the usual Stolz angle in the disk; but for N > 1 the region is tangent to the boundary of the ball along some directions.

Definition

For $X \in \partial \mathbb{B}^N$, a sequence $Z_n \to X$ is called **special** if

$$\lim_{n\to\infty}\frac{\|Z_n-\langle Z_n,X\rangle X\|^2}{1-\|\langle Z_n,X\rangle X\|^2}=0,$$

and **restricted** if it is special and its orthogonal projection $\langle Z_n, X \rangle X$ is non-tangential.

 ●
 ■
 ●
 ●
 ●
 ●
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

(日本) (日本) (日本)

Definition

The Koranyi region K(X, M) of vertex $X \in \partial \mathbb{B}^N$ and amplitude M > 1 is the set

$$\mathcal{K}(X, M) = \left\{ Z \in \mathbb{B}^N \left| rac{|1 - \langle Z, X
angle|}{1 - \|Z\|} < M
ight\}.$$

When N = 1, it is the usual Stolz angle in the disk; but for N > 1 the region is tangent to the boundary of the ball along some directions.

Definition

For $X \in \partial \mathbb{B}^N$, a sequence $Z_n \to X$ is called special if

$$\lim_{n\to\infty}\frac{\|Z_n-\langle Z_n,X\rangle X\|^2}{1-\|\langle Z_n,X\rangle X\|^2}=0,$$

and **restricted** if it is special and its orthogonal projection $\langle Z_n, X \rangle X$ is non-tangential.

Olena Ostapyuk (Northern Iowa) Parabolic dynamics in the disk and in the ball

ヘロト 人間 トイヨト イヨト

non-tangential \Rightarrow restricted \Rightarrow lies in a Koranyi region

Theorem (O.O.)

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \to 0.$

In particular, every non-zero-step sequence must converge tangentially.

non-tangential \Rightarrow restricted \Rightarrow lies in a Koranyi region

Theorem (O.O.)

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \to 0.$

In particular, every non-zero-step sequence must converge tangentially.

non-tangential \Rightarrow restricted \Rightarrow lies in a Koranyi region

Theorem (O.O.)

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \to 0.$

In particular, every non-zero-step sequence must converge tangentially.

Known examples

of parabolic maps in \mathbb{H}^N are:

Example 1: Heisenberg translations

 $(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$ for some $(z_0, w_0) \in \partial \mathbb{H}^N$, i.e. Re $z_0 = ||w_0||^2$. They are parabolic automorphisms of \mathbb{H}^N and thus have non-zero step.

Example 2: Generalized Heisenberg translations

 $(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$ with $\operatorname{Re} z_0 \ge ||w_0||^2$. They have zero step unless $\operatorname{Re} z_0 = ||w_0||^2$.

Known examples

of parabolic maps in \mathbb{H}^N are:

Example 1: Heisenberg translations

 $(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$ for some $(z_0, w_0) \in \partial \mathbb{H}^N$, i.e. Re $z_0 = ||w_0||^2$. They are parabolic automorphisms of \mathbb{H}^N and thus have non-zero step.

Example 2: Generalized Heisenberg translations

 $(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$ with $\operatorname{Re} z_0 \ge ||w_0||^2$. They have zero step unless $\operatorname{Re} z_0 = ||w_0||^2$.

Example 3: Parabolic linear-fractional maps of \mathbb{H}^N

(linear-fractional self-maps of the ball, transferred to \mathbb{H}^N).

$$f(Z) := \frac{AZ + B}{\left\langle Z, \overline{C} \right\rangle + d}$$

with $f(\mathbb{B}^N) \subseteq \mathbb{B}^N$, where *A* is $N \times N$ -matrix, $B, C \in \mathbb{C}^N$ and $d \in \mathbb{C}$.

Theorem (Bayart)

Parabolic linear-fractional maps that do not fix any non-trivial affine subset of \mathbb{B}^N are conjugated to generalized Heisenberg translations.

Example 3: Parabolic linear-fractional maps of \mathbb{H}^N

(linear-fractional self-maps of the ball, transferred to \mathbb{H}^N).

$$f(Z) := \frac{AZ + B}{\left\langle Z, \overline{C} \right\rangle + d}$$

with $f(\mathbb{B}^N) \subseteq \mathbb{B}^N$, where *A* is $N \times N$ -matrix, $B, C \in \mathbb{C}^N$ and $d \in \mathbb{C}$.

Theorem (Bayart)

Parabolic linear-fractional maps that do not fix any non-trivial affine subset of \mathbb{B}^N are conjugated to generalized Heisenberg translations.

Example 3: Parabolic linear-fractional maps of \mathbb{H}^N

(linear-fractional self-maps of the ball, transferred to \mathbb{H}^N).

$$f(Z) := \frac{AZ + B}{\left\langle Z, \overline{C} \right\rangle + d}$$

with $f(\mathbb{B}^N) \subseteq \mathbb{B}^N$, where *A* is $N \times N$ -matrix, $B, C \in \mathbb{C}^N$ and $d \in \mathbb{C}$.

Theorem (Bayart)

Parabolic linear-fractional maps that do not fix any non-trivial affine subset of \mathbb{B}^N are conjugated to generalized Heisenberg translations.

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ ,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then: *f* is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ . Moreover, all forward orbits have zero (resp. non-zero) step, if ϕ is parabolic zero (resp. non-zero) step map.

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ , construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then: *f* is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ . Moreover, all forward orbits have zero (resp. non-zero) step, if ϕ is parabolic zero (resp. non-zero) step map.

< ロ > < 同 > < 回 > < 回 >

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ ,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

Moreover, all forward orbits have zero (resp. non-zero) step, if ϕ is parabolic zero (resp. non-zero) step map.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ ,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

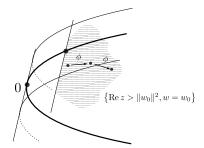
Moreover, all forward orbits have zero (resp. non-zero) step, if ϕ is parabolic zero (resp. non-zero) step map.

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ ,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

Moreover, all forward orbits have zero (resp. non-zero) step, if ϕ is parabolic zero (resp. non-zero) step map.



Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of parabolic type, with the Denjoy-Wolff point ∞ , construct

$$f(z, w) := (\phi(z) + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$$

for some $(z_0, w_0) \in \partial \mathbb{H}^N$. Then f is the self-map of \mathbb{H}^N with the Denjoy-Wolff point ∞ of parabolic type.

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of parabolic type, with the Denjoy-Wolff point ∞ , construct

$$f(z, w) := (\phi(z) + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$$

for some $(z_0, w_0) \in \partial \mathbb{H}^N$. Then f is the self-map of \mathbb{H}^N with the Denjoy-Wolff point ∞ of parabolic type.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 6. (Bayart) Maps with some regularity at the Denjoy-Wolff point

 $D^{n+\varepsilon}$: parabolic maps of \mathbb{B}^2 that can be expanded near the Denjoy-Wolff point up to a certain order.

Depending on *n* and the first derivative matrix, they can be conjugated to various generalized Heisenberg translations, in particular:

• If n = 5 and the matrix is non-diagonalizable, model map is $(z, w) \longmapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$

• If n = 6 and the matrix is diagonalizable, model map is $z \mapsto z + b$

Example 6. (Bayart) Maps with some regularity at the Denjoy-Wolff point

 $D^{n+\varepsilon}$: parabolic maps of \mathbb{B}^2 that can be expanded near the Denjoy-Wolff point up to a certain order.

Depending on *n* and the first derivative matrix, they can be conjugated to various generalized Heisenberg translations, in particular:

• If n = 5 and the matrix is non-diagonalizable, model map is $(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$

• If n = 6 and the matrix is diagonalizable, model map is $z \mapsto z + b$

イロト 不得 トイヨト イヨト

Example 6. (Bayart) Maps with some regularity at the Denjoy-Wolff point

 $D^{n+\varepsilon}$: parabolic maps of \mathbb{B}^2 that can be expanded near the Denjoy-Wolff point up to a certain order.

Depending on *n* and the first derivative matrix, they can be conjugated to various generalized Heisenberg translations, in particular:

- If n = 5 and the matrix is non-diagonalizable, model map is $(z, w) \longmapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$
- If n = 6 and the matrix is diagonalizable, model map is $z \mapsto z + b$

Thank you!

Olena Ostapyuk (Northern Iowa) Parabolic dynamics in the disk and in the ball

▶ ▲ 王 ▶ 王 ∽ Q C 03-30-2012 19/19

・ロト ・日下 ・ ヨト ・