Convergence of backward iteration sequences with bounded hyperbolic step in higher dimension

Olena Ostapyuk Kansas State University

One-dimensional case

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$

n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}_{n \ times}$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if
$$p \in \mathbb{D}$$
, then $f(p) = p$ and $|f'(p)| < 1$

if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \le 1$ in the sense of non-tangential limits

The point p is called the **Denjoy-Wolff point** of f.

Cases:

 $\mathbf{1}.p \in \mathbb{D}$ f is called elliptic

 $2.p \in \partial \mathbb{D}$, f'(p) < 1 hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

Corollary: every other fixed point q of f must lie on $\partial \mathbb{D}$, and its multiplier f'(q) > 1 (if finite).

If $q \in \partial \mathbb{D}$ and f(q) = q and $1 < f'(q) < \infty$, then q is called **boundary repelling fixed point** (BRFP).

Backward-iteration sequence: $\{w_n\}_{n=0}^{\infty}$, $f(w_{n+1}) = w_n$ for n = 0, 1, 2...

The pseudo-hyperbolic distance $\forall z, w \in \mathbb{D}$: $0 \le d_{\mathbb{D}}(z, w) = \frac{|z - w|}{|1 - \overline{z}w|} < 1$

Theorem (Poggi-Corradini, 2003)

Let $\{w_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d(w_n, w_{n+1}) \leq a < 1$. Then:

1. $w_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$

2. If $q \neq p$, then q is a BRFP (i.e. f'(q) > 1). If q = p, f is of parabolic type.

3. When q is BRFP, the convergence $w_n \rightarrow q$ is non-tangential.

4. If q = p, then $w_n \rightarrow q$ tangentially.

Multi-dimensional case

 \mathbb{C}^N , inner product $(z,w) = \sum_{j=1}^N z_j \bar{w_j}$ $\|z\|^2 = (z,z)$

Unit ball $\mathbb{B}^N = \{z \in \mathbb{C}^N : ||z|| < 1\}$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{z \to p} \frac{1 - ||f(z)||}{1 - ||z||} \in (0, 1]$ is a multiplier of f at p.

f is called hyperbolic if c < 1 and parabolic if c = 1.

Main Result

Theorem Let f be a holomorphic self-map of \mathbb{B}^N of hyperbolic type (with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$), $\{Z_n\}$ be a backward-itaration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$

2. $\{Z_n\}$ stays in a Koranyi region

3. Julia's lemma holds for τ with multiplier $A \ge \frac{1}{c}$, where c is the multiplier at p.

Horosphere of center $x \in \partial \mathbb{B}^N$ and radius R > 0: $E(x, R) = \left\{ z \in \mathbb{B}^N : \frac{|1 - (z, x)|^2}{1 - ||z||^2} < R \right\}$

Julia's lemma in \mathbb{B}^N : Let f be a holomorphic self-map of \mathbb{B}^N and $x \in \partial \mathbb{B}^N$ such that

$$\liminf_{z \to x} \frac{1 - \|f(z)\|}{1 - \|z\|} = \alpha < \infty$$

Then there exists a unique $y \in \partial \mathbb{B}^N$ such that $\forall R > 0 \ f(E(x, R)) \subset E(y, \alpha R)$.

Siegel domain: $\mathbb{H}^{N} = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^{2}\}$

Cayley transform: $\mathcal{C}: \mathbb{B}^N \to \mathbb{H}^N$

$$\mathcal{C}((z,w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right)$$

$$C^{-1}((z,w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$$

WLOG let Denjoy-Wolff point be
$$\infty \in \mathbb{H}^N$$
,
 $Z_n = (t_n, 0), Z_{n+1} = (z, w)$
Then $E(\infty, t) = \{Rez - ||w||^2 > t\}$

 $t_n := Rez_n - \|w_n\|^2$

$$\begin{cases} Rez - ||w||^2 \le ct_n \\ \left|\frac{z - t_n}{z + t_n}\right|^2 + \frac{4t_n ||w||^2}{|z + t_n|^2} \le a^2 \end{cases}$$

Claim $||pr(Z_n) - pr(Z_{n+1})||^2 \le Ct_n$

Using $t_{n+k} \leq c^k t_n$, k = 1, 2, ... (Julia's lemma) $\implies pr(Z_n) \xrightarrow[n \to \infty]{} \tau \in \partial \mathbb{H}^N \implies Z_n \xrightarrow[n \to \infty]{} \tau$ Koranyi region (generalization of Stolz angle) of vertex $x \in \partial \mathbb{B}^n$ and amplitude M > 1:

$$K(x, M) = \left\{ z \in \mathbb{B}^N : \frac{|1 - (z, x)|}{1 - ||z||} \le M \right\}$$

Intersection of K((1,0), M) with 1-dimensional complex subspace generated by (1,0) is

$$\left\{z_1 \in \mathbb{D} : \frac{|1-z_1|}{1-|z_1|} \le M\right\} \text{ (usual Stolz region)}$$

Intersection with (2n-1)-dimensional real space $\{z : Imz_1 = 0\}$ contains

 $(Rez_1 - 1/M)^2 + ||z'||^2 < (1 - 1/M)^2$

Open questions

- 1. Number of BRFP
- 2. Conjugation at BRFP
- 3. Parabolic and "elliptic" cases