Convergence of backward iteration sequences with bounded hyperbolic step in higher dimension

Olena Ostapyuk
Kansas State University

One-dimensional case

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}_{n \text { times }}$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p.
if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$
if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of non-tangential limits

The point p is called the Denjoy-Wolff point of f.

Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
3. $p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Corollary: every other fixed point q of f must lie on $\partial \mathbb{D}$, and its multiplier $f^{\prime}(q)>1$ (if finite).

If $q \in \partial \mathbb{D}$ and $f(q)=q$ and $1<f^{\prime}(q)<\infty$, then q is called boundary repelling fixed point (BRFP).

Backward-iteration sequence:
$\left\{w_{n}\right\}_{n=0}^{\infty}, f\left(w_{n+1}\right)=w_{n}$ for $n=0,1,2 \ldots$

The pseudo-hyperbolic distance $\forall z, w \in \mathbb{D}$:
$0 \leq d_{\mathbb{D}}(z, w)=\frac{|z-w|}{|1-\bar{z} w|}<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{w_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(w_{n}, w_{n+1}\right) \leq a<1$. Then:

1. $w_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a BRFP (i.e. $f^{\prime}(q)>1$). If $q=p, f$ is of parabolic type.
3. When q is BRFP, the convergence $w_{n} \rightarrow q$ is non-tangential.
4. If $q=p$, then $w_{n} \rightarrow q$ tangentially.

Multi-dimensional case

\mathbb{C}^{N}, inner product $(z, w)=\sum_{j=1}^{N} z_{j} \bar{w}_{j}$ $\|z\|^{2}=(z, z)$

Unit ball $\mathbb{B}^{N}=\left\{z \in \mathbb{C}^{N}:\|z\|<1\right\}$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{z \rightarrow p} \frac{1-\|f(z)\|}{1-\|z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.

Main Result

Theorem Let f be a holomorphic self-map of \mathbb{B}^{N} of hyperbolic type (with Denjoy-Wolff point $\left.p \in \partial \mathbb{B}^{N}\right),\left\{Z_{n}\right\}$ be a backward-itaration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } \tau$
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region
3. Julia's lemma holds for τ with multiplier $A \geq \frac{1}{c}$, where c is the multiplier at p .

Horosphere of center $x \in \partial \mathbb{B}^{N}$ and radius $R>0$:
$E(x, R)=\left\{z \in \mathbb{B}^{N}: \frac{|1-(z, x)|^{2}}{1-\|z\|^{2}}<R\right\}$
Julia's lemma in \mathbb{B}^{N} :
Let f be a holomorphic self-map of \mathbb{B}^{N} and $x \in \partial \mathbb{B}^{N}$ such that
$\liminf _{z \rightarrow x} \frac{1-\|f(z)\|}{1-\|z\|}=\alpha<\infty$
Then there exists a unique $y \in \partial \mathbb{B}^{N}$ such that $\forall R>0 f(E(x, R)) \subset E(y, \alpha R)$.

Siegel domain:
$\mathbb{H}^{N}=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1}: \operatorname{Re} z>\|w\|^{2}\right\}$
Cayley transform: $\mathcal{C}: \mathbb{B}^{N} \rightarrow \mathbb{H}^{N}$
$\mathcal{C}((z, w))=\left(\frac{1+z}{1-z}, \frac{w}{1-z}\right)$
$\mathcal{C}^{-1}((z, w))=\left(\frac{z-1}{z+1}, \frac{2 w}{z+1}\right)$

WLOG let Denjoy-Wolff point be $\infty \in \mathbb{H}^{N}$, $Z_{n}=\left(t_{n}, 0\right), Z_{n+1}=(z, w)$

Then $E(\infty, t)=\left\{\operatorname{Rez}-\|w\|^{2}>t\right\}$
$t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2}$

$$
\left\{\begin{array}{l}
\operatorname{Re} z-\|w\|^{2} \leq c t_{n} \\
\left|\frac{z-t_{n}}{z+t_{n}}\right|^{2}+\frac{4 t_{n}\|w\|^{2}}{\left|z+t_{n}\right|^{2}} \leq a^{2}
\end{array}\right.
$$

Claim $\left\|p r\left(Z_{n}\right)-p r\left(Z_{n+1}\right)\right\|^{2} \leq C t_{n}$
Using $t_{n+k} \leq c^{k} t_{n}, k=1,2, \ldots$ (Julia's lemma) $\Longrightarrow \operatorname{pr}\left(Z_{n}\right) \xrightarrow[n \rightarrow \infty]{ } \tau \in \partial \mathbb{H}^{N} \quad \Longrightarrow \quad Z_{n} \xrightarrow[n \rightarrow \infty]{ } \tau$

Koranyi region (generalization of Stolz angle) of vertex $x \in \partial \mathbb{B}^{n}$ and amplitude $M>1$:

$$
K(x, M)=\left\{z \in \mathbb{B}^{N}: \frac{|1-(z, x)|}{1-\|z\|} \leq M\right\}
$$

Intersection of $K((1,0), M)$ with 1-dimensional complex subspace generated by $(1,0)$ is
$\left\{z_{1} \in \mathbb{D}: \frac{\left|1-z_{1}\right|}{1-\left|z_{1}\right|} \leq M\right\}$ (usual Stolz region)
Intersection with (2n-1)-dimensional real space $\left\{z: \operatorname{Im} z_{1}=0\right\}$ contains
$\left(R e z_{1}-1 / M\right)^{2}+\left\|z^{\prime}\right\|^{2}<(1-1 / M)^{2}$

Open questions

1. Number of BRFP

2. Conjugation at BRFP
3. Parabolic and "elliptic" cases
