Backward-iteration sequences and boundary repelling fixed points in higher dimension

One-dimensional case, forward iteration

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of $f f_n = \underbrace{f \circ \ldots \circ f}_{n \ times}$

By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff): If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if $p \in \mathbb{D}$, then f(p) = p and |f'(p)| < 1

if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \leq 1$ in the sense of nontangential limits

The point p is called the **Denjoy-Wolff point** of f. Cases:

 $1.p \in \mathbb{D} f$ is called elliptic $2.p \in \partial \mathbb{D}, f'(p) < 1$ hyperbolic $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

Elliptic

Parabolic

Figure 1: Orbits near the Denjoy-Wolff point *p*.

One-dimensional case, backward iteration

Backward-iteration sequence:

 $\{z_n\}_{n=0}^{\infty}, f(z_{n+1}) = z_n \text{ for } n = 0, 1, 2...$ The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step:

$$d(z_n, z_{n+1}) \le a < 1$$

Theorem (Poggi-Corradini): Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudohyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$

2. If $q \neq p$, then q is a **boundary repelling fixed point** (BRFP) (i.e. f'(q) > 1). If q = p, f is of parabolic type.

3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.

4. If q = p, then $z_n \to q$ tangentially.

Olena Ostapyuk, Kansas State University

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier c = $f'(p) \le 1$: $\forall R > 0 \ f(H(p, R)) \subseteq H(p, cR),$

where H(p, R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

$$H(p,R) := \left\{z \in \mathbb{D}: \frac{|p-z|^2}{1-|z|^2} < R\right\}$$

Conjugation in hyperbolic case:

Theorem (Valiron): There is an analytic map $\psi : \mathbb{D} \to \mathbb{H}$ (where \mathbb{H} is the right half-plane), which solves the Schröder equation:

$$\psi \circ f = \frac{1}{c}\psi,$$

and so ψ conjugates f to multiplication in \mathbb{H}

Figure 2: Conjugation for forward iteration.

Conjugation:

Theorem (Poggi-Corradini): an analytic self-map of the unit disc \mathbb{D} f with BRFP $1 \in \partial \mathbb{D}$ and multiplier α at 1 can be conjugated to the automorphism $\eta(z) = (z - a)/(1 - az)$, where $a = (\alpha - 1)/(\alpha + 1)$:

$$\psi \circ \eta(z) = f \circ \psi(z),$$

via an analytic map ψ of \mathbb{D} with $\psi(\mathbb{D}) \subseteq \mathbb{D}$, which has non-tangential limit 1 at 1.

Figure 3: Conjugation for backward iteration.

 $||Z||^2 = (Z, Z)$

Theorem 1. Let f be a analytic self-map of \mathbb{B}^N of hyperbolic type (with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$), $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{R}^N}(Z_n, Z_{n+1}) \leq$ a < 1. Then:

2. $\{Z_n\}$ stays in a Koranyi region

Characterization of BRFP in terms of backward-iteration sequences: Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

via an analytic intertwining map ψ .

N-dimensional case, forward iteration

Consider \mathbb{C}^N , inner product $(Z, W) = \sum Z_j \overline{W_j}$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : ||Z|| < 1\}$

Julia's lemma in \mathbb{B}^N : Let f be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that $\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$

Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X, R)) \subset$ $H(Y, \alpha R).$

Horosphere of center $X \in \partial \mathbb{B}^N$ and radius R > 0:

$$H(X,R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z,X)|^2}{1 - \|Z\|^2} < R \right\}$$

Theorem (MacCluer): If f has no fixed points in \mathbb{B}^N , then f_n con-

verges uniformly on compact to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in$ (0,1] is a multiplier of f at p.

N-dimensional case, backward iteration

1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$

3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, where c is the multiplier at p.

Since $\alpha \geq \frac{1}{c} > 1$, the point $q \in \partial \mathbb{B}^N$ is called the **boundary repelling fixed point** for *f*.

Theorem 2. Suppose $f : \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function of hyperbolic type and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha}w)$

$$\psi \circ \eta(Z) = f \circ \psi(Z),$$

f is called hyperbolic if c < 1 and parabolic if c = 1. $\mathbb{H}^N = \{ (z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^2 \}$

Siegel domain: is biholomorphic to \mathbb{B}^N via Cayley transform: $\mathcal{C} : \mathbb{B}^N \to \mathbb{H}^N$ $\mathcal{C}((z,w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right)$ $\mathcal{C}^{-1}((z,w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$

Conjugation results:

- via $\psi : \mathbb{B}^N \to \mathbb{H}$.

sion, so

and is essentially one-dimensional map.

matrix A be diagonal, and WLOG $|a_{j,j}| = \sqrt{\alpha}$ for $j = 1 \dots L$ $|a_{j,j}| < \sqrt{\alpha} \text{ for } j = L + 1 \dots N - 1.$ is a rotation):

• (Bracci, Gentili, Poggi-Corradini): conjugation to a multiplication

• (Bracci, Gentili): f is conjugated to its linear part, assuming some regularity at the Denjoy-Wolff point.

Construction of ψ : $\psi = \lim_{n \to \infty} \{f_n \circ \tau_n \circ p_1\},\$ where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimen-

$$\psi(z,w) = \psi(z,0)$$

Figure 4: The image of ψ in Siegel domain.

An analytic map $f : \mathbb{H}^N \to \mathbb{H}^N$ is called **expandable** at 0 if

 $f(z, w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2})).$

In particular, 0 is a fixed point of f and α is the multiplier of f at 0. **Theorem 3.** Let f be expandable at 0, of hyperbolic type, and let the

Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \Omega \sqrt{\alpha} w) (\Omega)$

 $\psi \circ \eta(Z) = f \circ \psi(Z),$

via an analytic intertwining map $\psi(z, w) = \psi(p_L(z, w))$, where p_L is a projection on the first L + 1 dimensions.