Backward iteration in the unit ball

Olena Ostapyuk

Department of Mathematics Kansas State University

AMS Meeting, Albuquerque NM, Spring 2010

Forward iteration

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

if
$$p \in \mathbb{D}$$
, then $f(p) = p$ and $|f'(p)| < 1$ if $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Forward iteration

Let *f* be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$

n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}$

n times

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

if
$$p \in \mathbb{D}$$
, then $f(p) = p$ and $|f'(p)| < 1$ if $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Forward iteration

Let
$$f$$
 be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$
n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

if
$$p \in \mathbb{D}$$
, then $f(p) = p$ and $|f'(p)| < 1$ if $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Forward iteration

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w)=\left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if $p \in \mathbb{D}$, then f(p) = p and |f'(p)| < 1 if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Forward iteration

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w)=\left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff)

if
$$p \in \mathbb{D}$$
, then $f(p) = p$ and $|f'(p)| < 1$
if $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Cases:

 $1.p \in \mathbb{D}$ f is called elliptic

 $2.p \in \partial \mathbb{D}$, f'(p) < 1 hyperbolic

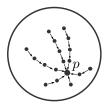
 $3.p \in \partial \mathbb{D},\, f'(p) = 1$ parabolic

Cases:

1.p ∈ \mathbb{D} f is called elliptic

 $2.p \in \partial \mathbb{D}$, f'(p) < 1 hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic



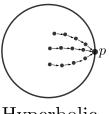
Elliptic

Cases:

1.p ∈ \mathbb{D} f is called elliptic

 $2.p \in \partial \mathbb{D}$, f'(p) < 1 hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic



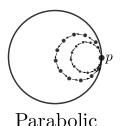
Hyperbolic

Cases:

1.p ∈ \mathbb{D} f is called elliptic

$$2.p \in \partial \mathbb{D}$$
, $f'(p) < 1$ hyperbolic

$$3.p \in \partial \mathbb{D}$$
, $f'(p) = 1$ parabolic

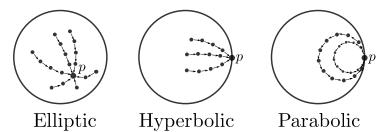


Cases:

1.p ∈ \mathbb{D} f is called elliptic

$$2.p \in \partial \mathbb{D}$$
, $f'(p) < 1$ hyperbolic

$$3.p \in \partial \mathbb{D}$$
, $f'(p) = 1$ parabolic



If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point p, and multiplier $c = f'(p) \le 1$:

$$\forall R > 0 \quad f(H(p,R)) \subseteq H(p,cR),$$

where H(p,R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

$$H(p,R) := \left\{ z \in \mathbb{D} : \frac{|p-z|^2}{1-|z|^2} < R \right\}$$

If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point p, and multiplier $c = f'(p) \le 1$:

$$\forall R > 0 \quad f(H(p,R)) \subseteq H(p,cR),$$

where H(p,R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

$$H(p,R) := \left\{z \in \mathbb{D} : \frac{|p-z|^2}{1-|z|^2} < R\right\}$$

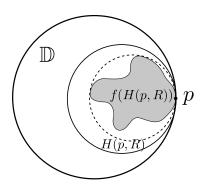
4 / 15

If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point p, and multiplier $c = f'(p) \le 1$:

$$\forall R > 0 \quad f(H(p,R)) \subseteq H(p,cR),$$

where H(p,R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

$$H(p,R) := \left\{z \in \mathbb{D} : \frac{|p-z|^2}{1-|z|^2} < R\right\}$$



Backward-iteration sequence:

$${z_n}_{n=0}^{\infty}$$
, $f(z_{n+1}) = z_n$ for $n = 0, 1, 2...$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

- 1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$
- 2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. f'(q) > 1). If q = p, f is of parabolic type.
- 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.
- 4. If q = p, then $w_n \rightarrow q$ tangentially.

Backward-iteration sequence:

$${z_n}_{n=0}^{\infty}$$
, $f(z_{n+1}) = z_n$ for $n = 0, 1, 2...$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

- 1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$
- 2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. f'(q) > 1). If q = p, f is of parabolic type.
- 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.
- 4. If q = p, then $w_n \rightarrow q$ tangentially.

Backward-iteration sequence:

$${z_n}_{n=0}^{\infty}$$
, $f(z_{n+1}) = z_n$ for $n = 0, 1, 2...$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

- 1. $z_n o q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$
- 2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. f'(q) > 1). If q = p, f is of parabolic type.
- 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.
- 4. If q = p, then $w_n \rightarrow q$ tangentially.

Backward-iteration sequence:

$${z_n}_{n=0}^{\infty}$$
, $f(z_{n+1}) = z_n$ for $n = 0, 1, 2...$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

- 1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$
- 2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. f'(q) > 1). If q = p, f is of parabolic type.
- 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.
- 4. If q = p, then $w_n \rightarrow q$ tangentially.

Backward-iteration sequence:

$${z_n}_{n=0}^{\infty}$$
, $f(z_{n+1}) = z_n$ for $n = 0, 1, 2...$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

- 1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$
- 2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. f'(q) > 1). If q = p, f is of parabolic type.
- 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.
- 4. If q = p, then $w_n \rightarrow q$ tangentially.

Backward-iteration sequence:

$${z_n}_{n=0}^{\infty}$$
, $f(z_{n+1}) = z_n$ for $n = 0, 1, 2...$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

- 1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$
- 2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. f'(q) > 1). If q = p, f is of parabolic type.
- 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.
- 4. If q = p, then $w_n \rightarrow q$ tangentially.

Backward-iteration sequence:

$${z_n}_{n=0}^{\infty}$$
, $f(z_{n+1}) = z_n$ for $n = 0, 1, 2...$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

- 1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$
- 2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e.
- f'(q) > 1). If q = p, f is of parabolic type.
- 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.
- 4. If q = p, then $w_n \rightarrow q$ tangentially.

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, \ \|Z\|^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : ||Z|| < 1\}$

Julia's lemma in \mathbb{R}^N

Let f be a holomorphic self-map of \mathbb{B}^N and $X\in\partial\mathbb{B}^N$ such that

$$\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$$

Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X,R)) \subset H(Y,\alpha R)$.

$$H(X,R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z,X)|^2}{1 - \|Z\|^2} < R \right\}$$

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, \ \|Z\|^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : \|Z\| < 1\}$

Julia's lemma in \mathbb{B}^N

Let f be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that

$$\lim_{Z \to X} \inf \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$$

Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

$$H(X,R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z,X)|^2}{1 - \|Z\|^2} < R \right\}$$

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, \ \|Z\|^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : \|Z\| < 1\}$

Julia's lemma in \mathbb{B}^N

Let f be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that

$$\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$$

Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X,R)) \subset H(Y,\alpha R)$.

$$H(X,R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z,X)|^2}{1 - \|Z\|^2} < R \right\}$$

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, \ \|Z\|^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : \|Z\| < 1\}$

Julia's lemma in \mathbb{B}^N

Let f be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that

$$\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$$

Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X,R)) \subset H(Y,\alpha R)$.

$$H(X,R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z,X)|^2}{1 - \|Z\|^2} < R \right\}$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0,1]$ is a multiplier of f at p.

f is called hyperbolic if c < 1 and parabolic if c = 1.

Siegel domain

$$\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > \|w\|^2\}$$

Cayley transform:
$$C: \mathbb{B}^N \to \mathbb{H}^N$$

$$C((z,w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right)$$
$$C^{-1}((z,w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0,1]$ is a multiplier of f at p.

f is called hyperbolic if c < 1 and parabolic if c = 1.

Siegel domain:

$$\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > \|w\|^2\}$$

Cayley transform:
$$C : \mathbb{B}^N \to \mathbb{H}^N$$

$$(z, w) = (1 - z, 1 - z)$$

$$C^{-1}((z, w)) = (\frac{z - 1}{z + 1}, \frac{2w}{z + 1})$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0,1]$ is a multiplier of f at p.

f is called hyperbolic if c < 1 and parabolic if c = 1.

Siegel domain:

$$\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^2\}$$

Cayley transform:
$$C: \mathbb{B}^N \to \mathbb{H}^N$$

$$C((z,w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right)$$

$$C^{-1}((z,w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$$

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic type (with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$), $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- 1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$
- 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ
- 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, where c is the multiplier at p, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \ \forall R > 0$

Since $\alpha \geq \frac{1}{c} > 1$, the point $\tau \in \partial \mathbb{B}^N$ is called the **boundary repelling** fixed point (BRFP) for f.

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic type (with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$), $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- 1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$
- 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ
- 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, where c is the multiplier at p, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \ \forall R > 0$

Since $\alpha \geq \frac{1}{c} > 1$, the point $\tau \in \partial \mathbb{B}^N$ is called the **boundary repelling** fixed point (BRFP) for f.

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic type (with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$), $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- 1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \to \infty]{} \tau$
- 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ
- 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, where c is the multiplier at p, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \ \forall R > 0$

Since $\alpha \geq \frac{1}{c} > 1$, the point $\tau \in \partial \mathbb{B}^N$ is called the **boundary repelling** fixed point (BRFP) for f.

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic type (with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$), $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- 1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$
- 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ
- 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, where c is the multiplier at p, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \ \forall R > 0$

Since $\alpha \geq \frac{1}{c} > 1$, the point $\tau \in \partial \mathbb{B}^N$ is called the **boundary repelling** fixed point (BRFP) for f.

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic type (with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$), $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- 1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$
- 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ
- 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, where c is the multiplier at p, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \ \forall R > 0$

Since $\alpha \geq \frac{1}{c} > 1$, the point $\tau \in \partial \mathbb{B}^N$ is called the **boundary repelling** fixed point (BRFP) for f.

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic type (with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$), $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- 1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$
- 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ
- 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, where c is the multiplier at p, i.e. $f(H(\tau,R)) \subset H(\tau,\alpha R) \ \forall R > 0$

Since $\alpha \geq \frac{1}{c} > 1$, the point $\tau \in \partial \mathbb{B}^N$ is called the **boundary repelling** fixed point (BRFP) for f.

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Counterexample: $f: \mathbb{H}^2 \to \mathbb{H}^2$, $f(z, w) = (2z + w^2, w)$

Set of BRFP's: $\left\{ \left(r^{2},ir\right) |r\in\mathbb{R}\right. \right\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Counterexample: $f: \mathbb{H}^2 \to \mathbb{H}^2$, $f(z, w) = (2z + w^2, w)$

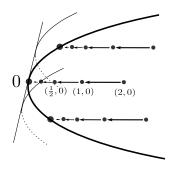
Set of BRFP's: $\left\{(r^2, ir) | r \in \mathbb{R}\right\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Counterexample: $f: \mathbb{H}^2 \to \mathbb{H}^2$, $f(z, w) = (2z + w^2, w)$

Set of BRFP's: $\{(r^2, ir) | r \in \mathbb{R} \}$



1-dimensional hyperbolic case, forward iteration (Valiron, 1931):

$$\psi \circ f = \frac{1}{c}\psi,$$

where $\psi: \mathbb{D} \to \mathbb{H}$ is an analytic map to a half-plane.

1-dimensional case, backward iteration (Poggi-Corradini, 2000):

f an analytic self-map of $\mathbb D$ with BRFP $1 \in \partial \mathbb D$ and multiplier α at 1 can be conjugated to the automorphism $\eta(z) = (z-a)/(1-az)$, where $a = (\alpha-1)/(\alpha+1)$:

$$\psi \circ \eta(z) = f \circ \psi(z)$$

via an analytic map ψ of $\mathbb D$ with $\psi(\mathbb D)\subseteq \mathbb D$, which has non-tangential limit 1 at 1.

1-dimensional hyperbolic case, forward iteration (Valiron, 1931):

$$\psi \circ f = \frac{1}{c}\psi,$$

where $\psi: \mathbb{D} \to \mathbb{H}$ is an analytic map to a half-plane.

1-dimensional case, backward iteration (Poggi-Corradini, 2000):

f an analytic self-map of $\mathbb D$ with BRFP 1 $\in \partial \mathbb D$ and multiplier α at 1 can be conjugated to the automorphism $\eta(z) = (z-a)/(1-az)$, where $a = (\alpha-1)/(\alpha+1)$:

$$\psi \circ \eta(z) = f \circ \psi(z),$$

via an analytic map ψ of $\mathbb D$ with $\psi(\mathbb D)\subseteq \mathbb D$, which has non-tangential limit 1 at 1.

N-dimensional case, forward iteration (Bracci, Gentili, Poggi-Corradini):

conjugation to a multiplication via $\psi : \mathbb{B}^{N} \to \mathbb{H}$:

$$\psi \circ f = \frac{1}{c} \psi$$

N-dimensional case, forward iteration (Bracci, Gentili, 2005):

f is conjugated to its linear part A via $\psi: \mathbb{H}^N \to \mathbb{H}^N$, assuming some regularity at the Denjoy-Wolff point:

$$\psi \circ f = A\psi$$

N-dimensional case, forward iteration (Bracci, Gentili, Poggi-Corradini):

conjugation to a multiplication via $\psi : \mathbb{B}^{N} \to \mathbb{H}$:

$$\psi \circ f = \frac{1}{c} \psi$$

N-dimensional case, forward iteration (Bracci, Gentili, 2005):

f is conjugated to its linear part A via $\psi: \mathbb{H}^N \to \mathbb{H}^N$, assuming some regularity at the Denjoy-Wolff point:

$$\psi \circ \textit{f} = \textit{A}\psi$$

Theorem 2. (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha} w)$

$$\psi \circ \eta(Z) = f \circ \psi(Z),$$

via an analytic intertwining map ψ .

Construction of ψ :

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension so

$$\psi(\mathsf{z},\mathsf{w}) = \psi(\mathsf{z},\mathsf{0})$$

and is essentially one-dimensional map.

Theorem 2. (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha} w)$

$$\psi \circ \eta(Z) = f \circ \psi(Z),$$

via an analytic intertwining map ψ .

Construction of ψ :

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

$$\psi(\mathsf{z},\mathsf{w}) = \psi(\mathsf{z},\mathsf{0})$$

and is essentially one-dimensional map.

Theorem 2. (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha} w)$

$$\psi \circ \eta(\mathbf{Z}) = \mathbf{f} \circ \psi(\mathbf{Z}),$$

via an analytic intertwining map ψ .

Construction of ψ :

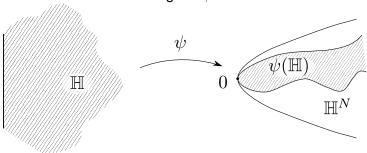
$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

$$\psi(\mathbf{z},\mathbf{w})=\psi(\mathbf{z},\mathbf{0})$$

and is essentially one-dimensional map.

The image of ψ in \mathbb{H}^N :



Conjugation for expandable maps

Theorem 3.

Under some regularity condition, it is possible to improve ψ such that

$$\psi(\mathbf{z},\mathbf{w})=\psi(\mathbf{p}_{L}(\mathbf{z},\mathbf{w})),$$

where p_L is a projection on the first L dimensions.

Condition is

$$f(z, w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2}))$$

e.g.
$$A = Diag(\sqrt{\alpha}, \dots \sqrt{\alpha}, \beta_1, \dots \beta_{N-L})$$
, where $\beta_i < \sqrt{\alpha}$

Conjugation for expandable maps

Theorem 3.

Under some regularity condition, it is possible to improve ψ such that

$$\psi(\mathbf{z},\mathbf{w})=\psi(\mathbf{p}_{L}(\mathbf{z},\mathbf{w})),$$

where p_L is a projection on the first L dimensions.

Condition is

$$f(z, w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2}))$$

e.g.
$$A = Diag(\sqrt{\alpha}, \dots, \sqrt{\alpha}, \beta_1, \dots, \beta_{N-L})$$
, where $\beta_i < \sqrt{\alpha}$

- Dimension of stable set at the BRFP q (union of all backward iteration sequences with bounded step tending to q)
- Conjugation for non-isolated fixed points
- Elliptic and parabolic cases

- Dimension of stable set at the BRFP q (union of all backward iteration sequences with bounded step tending to q)
- Conjugation for non-isolated fixed points
- Elliptic and parabolic cases

- Dimension of stable set at the BRFP q (union of all backward iteration sequences with bounded step tending to q)
- Conjugation for non-isolated fixed points
- Elliptic and parabolic cases

- Dimension of stable set at the BRFP q (union of all backward iteration sequences with bounded step tending to q)
- Conjugation for non-isolated fixed points
- Elliptic and parabolic cases