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Abstract. We study the dynamical behavior of functions on vertices of a

graph that are contractions in the graph metric. We show that the fixed point

set of such functions must be convex. If a function has no fixed points and the
graph is a tree, we prove that every dynamical cycle must have an even period

and the function behaves eventually like a symmetry.

1. Introduction

This work was inspired by dynamics of analytic functions on the unit disk. The
key property of such functions is the point-invariant Schwarz Lemma, i.e. that
analytic functions are contractions in the hyperbolic metric of the disk. This prop-
erty allows to prove various results about iteration of analytic functions, see, for
example, survey paper [4].

Our purpose is to study dynamics of contractions in a discrete setting. In partic-
ular we study dynamics on finite graphs (in most cases, trees). A connected graph
can be considered as a discrete metric space of vertices with the graph metric. Let
G = (V,E) be a finite, connected, simple graph with the set of vertices V and the
set of edges E. Then for all vertices x, y ∈ V we say the distance between x and y,
denoted d(x, y), is the number of edges in the shortest path connecting x to y. Such
path is called a geodesic. Note that trees as metric spaces are 0-hyperbolic ([2]), so
we expect them to have some similar properties to the unit disk with hyperbolic
metric.

We wish to study contractions (in the graph metric) on the vertices of a graph.
Let f be a function on the vertices of G to the vertices of G. We say f is a contraction
if for all vertices x, y ∈ V d(f(x), f(y)) ≤ d(x, y). We will need some terminology
from dynamics. Let f be a function. We denote by f◦n(x) = f ◦ f ◦ f ◦ . . . ◦ f(x)
(n terms) the nth iterate of f . If for some point x and some positive integer n
f◦n(x) = x, then we say x is periodic point, x lies on a dynamical cycle of f of
period n, or that x lies on a dynamical n-cycle of f . If f(x) = x, we say x is a fixed
point of f . We use the term dynamical cycle to distinguish these cycles from the
graph cycles.

It is easy to show by induction that, given a contraction f , f◦n is also a contrac-
tion for any positive integer n. Dynamical cycles and fixed points will be the main
focus of our study.

2. Fixed Point Sets

Our goal is to characterize the set of fixed points of a contraction on graph
vertices. Note that in the general case, the fixed point set can be empty:

Example 2.1. Let G1 be a graph with four vertices x, y, z, w. Let f be a function
on the vertices of G1 defined by f(x) = y, f(y) = z, f(z) = w, and f(w) = x. Then
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{x, y, z, w} forms a dynamical 4-cycle of f (see Figure 1). f is clearly a contraction
since for all a, b ∈ {x, y, w, z}, we have d(f(a), f(b)) = d(a, b). In this case, the set
of fixed points of f is empty.

x

y

z

w

Figure 1. Dynamical 4-cycle.

Example 2.2. Let G2 be a graph with vertices x0, x1, x2, y0, y1, z0 and z1 (see
Figure 2). Let f be a contraction on the vertices of G2 such that x0, x1, x2 are
fixed by f , and {y0, y1} and {z0, z1} are dynamical 2-cycles of f .

Note that one main difference between the two examples is that for any two
vertices in G2, the geodesic connecting them is unique, whereas this is not the case
with G1. Notice also that for any two fixed points in G2, the geodesic connecting
them contains only fixed points.

Definition 2.3. Let G = (V,E) be a graph and let H ⊂ V . We say H is convex
if for any two vertices in H the geodesic connecting them contains only vertices in
H. (See, for example, [3].)

Thus in Example 2.2, the set of fixed points of f is convex. In fact, this is true
in general:

Theorem 2.4. Let G = (V,E) be a graph such that the geodesic between any two
vertices is unique. Let f be a contraction on the vertices of G. Then the set of fixed
points of f is convex.

Proof. Let x, y ∈ V be fixed by f . Let L be the unique geodesic connecting them.
Let z ∈ L. We need to show that f(z) = z. We will first show that f(z) ∈ L and
it will follow that f(z) = z.
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Figure 2. Cycles and fixed points.

By way of contradiction, suppose that f(z) /∈ L. Then there exist unique
geodesics connecting x to f(z) and y to f(z), respectively. We can concatenate
these geodesics to construct a walk K connecting x to y. Then the length of
K is d(x, f(z)) + d(f(z), y) and the length of L is d(x, z) + d(z, y). Since f is
a contraction and x and y are fixed points, we have d(f(z), x) ≤ d(z, x) and
d(f(z), y) ≤ d(z, y). Then it follows that d(x, f(z)) + d(f(z), y) ≤ d(x, z) + d(z, y).
If d(x, f(z))+d(f(z), y) = d(x, z)+d(z, y), then L is not a unique geodesic between
x and y, a contradiction. If d(x, f(z)) + d(f(z), y) < d(x, z) + d(z, y), then K is
shorter than L, which is also a contradiction. Thus it must be that z ∈ L.

Now we will show that f(z) = z. Suppose f(z) 6= z. Since f(z) lies on the
geodesic L connecting x to y, we have d(x, z) + d(z, y) = d(x, f(z)) + d(f(z), y) =
d(x, y). We can assume without loss of generality that d(x, f(z)) < d(x, z), in
which case we obtain d(y, f(z)) = d(x, y)− d(x, f(z)) > d(x, y)− d(x, z) = d(y, z),
contradicting the fact that f is a contraction. Thus we conclude that f(z) = z.

�

Note that if for any two points in G the geodesic connecting them is not unique
then the conclusion of Theorem 2.4 does not necessarily hold, as can be seen in the
following counterexample.

Example 2.5. Let G3 be a graph with vertices x0, x1, y and z as shown in Figure
3.

Let f be a contraction such that the vertices z and y are fixed and the points
x0 and x1 form a dynamical 2-cycle. Note that the geodesic connecting z to y is
not unique, since the path from z to y through x0 is the same length as the path
through x1. Despite the fact that z and y are fixed and that x0, x1 lie on the
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Figure 3. The graph G3 with non-unique geodesics.

geodesics connecting them, x0 and x1 are clearly not fixed. Thus the conclusion of
Theorem 2.4 does not hold in this case.

Corollary 2.6. Let G = (V,E) be a graph such that for any two vertices in G the
geodesic connecting them is unique. Let f be a contraction on V . Suppose f has a
dynamical cycle J of period k. Let z be a point which lies on the geodesic connecting
two consecutive points in J . Then z lies on a dynamical cycle whose period divides
k.

Proof. Let x, y ∈ J . Let z ∈ V such that z lies on the geodesic between x and y.
Since J is a dynamical cycle of period k, f◦k(x) = x and f◦k(y) = y. Thus x and y
are fixed by the kth iterate of f . Since f is a contraction, any iterate of f is also a
contraction. Thus Theorem 2.4, applied to f◦k implies that f◦k(z) = z. So z must
lie on a dynamical cycle whose period divides k.

�

Now we will consider a particular case when the graph is a tree. For any tree, a
path connecting any two points is unique, hence geodesics are unique, so Theorem
2.4 holds. But the converse is also true for trees: any convex set of vertices will be
a fixed point set for some contraction.

We will need the following property of a tree structure: in a tree, a concatenation
of two geodesics from x to y and from y to z is either a geodesic from x to z or a
walk that follows the geodesic connecting x to y until the fist common point of two
geodesics y′, then follows the geodesic from y′ to y, then goes back to y′ along the
same geodesic and finally follows the geodesic from y′ to z. Note that concatenation
of geodesics from x to y′ and from y′ to z will form a geodesic that connects x to z.



DISCRETE DYNAMICS OF CONTRACTIONS ON GRAPHS 5

Proposition 2.7. Let T = (V,E) be a tree and H ⊂ V be convex set. Then there
exists a contraction f such that H is the fixed point set of f .

Proof. Given H, we define the desired contraction f as follows: for all x ∈ V ,
f(x) = y, where y ∈ H is the closest vertex to x in H. Note that such y is unique.
If x /∈ H and there are two points y1 and y2 in H within the same (shortest) distance
to x, we can consider the point x′ on the intersection of the geodesics connecting
x to y1 and x to y2 that the geodesics from y1 to y2 passes through it. Then this
point is in H and also closer to x than either y1 or y2, which is contradiction. Thus
the point y is unique and function f is well defined. Also, H is clearly fixed point
set of f .

Figure 4. Constructing contraction f for a given convex subset
of vertices H.

Now we need to show that f is a contraction. Let f(x1) = y1 and f(x2) = y2.
Consider a walk following the geodesic from x1 to y1, then from y1 to y2. If there is
common point of these geodesics other than y1, then this point is in H and within
shorter distance to x1 than y1, which contradicts the construction of y1. So the
concatenation of these two geodesics is the geodesic from x1 to y2. Similarly, the
geodesic from y1 to x2 passes through y2, and finally, the geodesic from x1 to x2 is
just a concatenation of those from x1 to y1, y1 to y2 and y2 to x1. So we have

d(x1, x2) = d(x1, y1) + (dy1, y2) + d(y2, x2) ≥ d(y1, y2),

and f is a contraction.
�

3. Contractions with No Fixed Points

In the previous section, we have characterized the set of fixed points of a con-
traction on the vertices of a graph with unique geodesics, in particular a tree. Next
we want to consider the case when a contraction has no fixed points. Then there
must exist a dynamical cycle. We will use the following property of periodic points:
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Lemma 3.1. Let G be a finite graph, and f be a contraction on vertices of G. If x
and y are two periodic points of f (not necessarily from the same dynamical cycle),
then d(f(x), f(y)) = d(x, y).

Proof. Assume x belongs to a dynamical m-cycle and y belongs to a dynamical
n-cycle. Let K be a common multiple of m and n. Then we have:

d(x, y) ≥ d(f(x), f(y)) ≥ . . . ≥ d(f◦K(x), f◦K(y)) = d(x, y).

So all inequalities must be in fact equalities and in particular, d(f(x), f(y)) =
d(x, y). �

Now let us introduce some notations. Let G = (V,E) be a graph and f a
contraction on V . Let J ⊂ V be a dynamical cycle of f . Then we denote by J ′

the set of all vertices which lie on geodesics connecting consecutive points in J ,
together with the vertices in J .

Theorem 3.2. Let T be a finite tree. Let f be a contraction on the vertices of T .
If f has no fixed points, then f has a dynamical 2-cycle such that the points in the
cycle are connected by an edge. Moreover, such a cycle is unique.

Proof. Suppose f has no fixed points. Since the number of vertices of T is finite,
every vertex of T either lies on a dynamical cycle of period greater than 1 or is
eventually mapped into one. Let k be the least period of all dynamical cycles of f .
Let J be a dynamical cycle of period k such that the distance between consecutive
points in J is least among all dynamical cycles of f of period k. We want to show
that k = 2.

We claim that for k > 2 there must exist two geodesics connecting consecutive
points in J that intersect at a point other than their end-points. If not the points
in J ′ would form a graph cycle, which a contradiction since T is a tree. Thus
there must exist two geodesics which intersect at a point which is not one of their
endpoints.

Suppose two non-consecutive geodesics intersect at some point y. Then we claim
that there must exist two consecutive geodesics which intersect at point z which is
not one of their endpoints. Indeed, if we start from the point y of intersection of
two non-consecutive geodesics and follow one of the geodesics to the point xj on
the cycle J , then follow the next geodesic to the point xj+1 = f(xj), and so on, we
will eventually return to the point y. Since the graph is a tree, the walk constructed
this way must go over each edge in this walk at least twice. In particular, there
must exist a vertex w which is farthest away from y on this walk and an edge {w, z}
such that our walk will follow the edge from z to w and then immediately return
to z through the same edge. Note that w must be an endpoint of two consecutive
geodesics, because one geodesic cannot follow the same edge twice. Then z lies on
the intersection of two consecutive geodesics.

Without loss of generality, let x0, x1, x2 be the endpoints of the two consecutive
geodesics constructed above. By Corollary 2.6, z must lie on a dynamical cycle
whose period divides k, but since k is the least possible cycle length, z must lie on
a dynamical k-cycle.

Since f is a contraction and x0, x1, x2 are points on a dynamical cycle, f
must map the geodesic from x0 to x1 one-to-one onto the geodesic from x1 to
x2. Since z lies on the geodesic from x0 to x1, f(z) must lie on the geodesic
from x1 to x2. Thus both z and f(z) lie on the geodesic from x1 to x2 and we
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have d(z, f(z)) < d(x1, x2) = d(x0, x1). So we have found a dynamical k-cycle{
z, f(z), . . . , f◦(k−1)(z)

}
such that the distance between two consecutive point in

this cycle is less that d(x0, x1).
This contradicts the way we select J , so k must be equal to 2 and the geodesic

from x0 to x1, which is the same as the geodesic from x1 to x0, must contain no
other points. This means there is a dynamical 2-cycle {x0, x1} and x0 and x1 are
connected by an edge.

Now we need prove that such a dynamical 2-cycle is unique. Let {y0, y1} be
another such cycle. Without loss of generality assume that the distance a between
x0 and y0 is the shortest among all distances from a point in {x0, x1} to a point
in {y0, y1}. Now consider x1, it is connected to x0 by an edge. If x1 lies on the
geodesic from x0 to y0, then d(x1, y0) < d(x0, y0), which contradicts the choice of
x0, y0. Otherwise, the geodesic from y0 to x1 follows the geodesic from y0 to x0 and
then the edge connecting x0 to x1, so d(y0, x1) = a+1. Similarly, d(x0, y1) = a+1,
and finally, d(x1, y1) = a + 2. But then d(x1, y1) = d(f(x0), f(y0)) > d(x0, y0),
which contradicts the assumption that f is a contraction.

�

It will in fact turn out that every dynamical cycle of a contraction with no
fixed points has even period. To prove this we will need the following corollary to
Theorem 3.2. Let us introduce the following notation. Let {x0, x1} be the points
in the 2-cycle, constructed in Theorem 3.2. We let X0 denote the set of all points
which are within shorter distance to x0 than to x1. Similarly we let X1 denote the
set of all points which are within shorter distance to x1 than to x0, see Figure 5.

Figure 5. Unique 2-cycle {x0, x1} and sets X0 and X1.

Corollary 3.3. Let T be a finite tree and f a contraction on the vertices of T such
that f has no fixed points. Let {x0, x1} be the unique dynamical 2-cycle, where x0
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and x1 are connected by an edge. Then for all vertices z that lie on any dynamical
cycle, if z ∈ X0 (respectively X1), then f(z) ∈ X1 (respectively X0).

Proof. Let z lie on a dynamical cycle and z ∈ X0. By way of contradiction sup-
pose that f(z) ∈ X0. Let a = d(z, x0), then d(z, x1) = a + 1. By Lemma 3.1,
d(f(z), x1) = a, and since f(z) ∈ X0, we must have d(f(z), x0) < d(f(z), x1) = a.
But by Lemma 3.1 again, d(f(z), x0) = d(f(z), f(x1)) = d(z, x1) = a + 1, which is
a contradiction. So f(z) ∈ X1.

�

Note that if z is not a periodic point, then the above claim does not hold.

Example 3.4. Let T be a tree with vertices x0, x1 and z, such that there are
edges between x0 and x1 and between x0 and z, and f be a contraction such that
{x0, x1} form a dynamical 2-cycle and f(z) = x0 (see Figure 6). Then f has no
fixed points, and x0 and x1 form the unique 2-cycle connected by an edge. Since
f(z) = x0, we have z ∈ X0 and also f(z) ∈ X0. Thus we see that if a point z is in
X0 but does not lie on a dynamical cycle, it is not necessarily true that f(z) ∈ X1.

Figure 6

Now we are ready to prove the following:

Theorem 3.5. Let T be a finite tree and f a contraction on the vertices of T such
that f has no fixed points. Then every dynamical cycle of f has even period.

Proof. Since f has no fixed points, f has a dynamical 2-cycle {x0, x1} whose points
are connected by an edge and sets of vertices X0 and X1 as defined above. Let
{y0, y1, ..., yn−1} be a dynamical n-cycle of f . Without loss of generality, suppose
y0 ∈ X0. Then by Corollary 3.3, we have y1 ∈ X1, and in general, y2k ∈ X0 and
y2k+1 ∈ X1. If n is odd, then y0 = f(yn−1) ∈ X1, which is contradiction to y0 ∈ X0.
Hence every dynamical cycle of f has even period.

�

If a contraction f on the vertices of a tree T has no fixed points, then f eventually
behaves like a symmetry. More precisely:
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Theorem 3.6. Let T = (V,E) be a finite tree and f a contraction on V without
fixed points. Then there exists a subset H of V and a non-negative integer N such
that f◦N (V ) = H and f is a symmetry on the connected subgraph induced by H.
In particular, there is an edge in the subgraph, such that two connected components
obtained by removing this edge are isomorphic graphs and f is an isomorphism.

Proof. Since T is finite and has no fixed points, each vertex of T will be mapped
eventually to a point on a dynamical cycle. Thus there exists N such that f◦N (V ) =
H contains only periodic points of f . Note that by Corollary 2.6, the subgraph
induced by H is connected. Let {x0, x1} be the unique dynamical 2-cycle whose
points are connected by an edge. Then by Corollary 3.3, for all z ∈ H ∩ X0,
f(z) ∈ H ∩X1 and for all z ∈ H ∩X1, f(z) ∈ H ∩X0. Moreover, since all points
in H are periodic, f maps H ∩ X0 one-to-one and onto H ∩ X1. Now we need
to show that any two vertices y, z in H ∩ X0 are connected by an edge if and
only if f(y) and f(z) are connected by an edge. But being connected by an edge
is equivalent to d(y, z) = 1, and since by Lemma 3.1, d(y, z) = d(f(y), f(z)), the
required conclusion follows.

�

4. Conclusion

Note that in the classical case of the unit disk in the complex plane, any ana-
lytic self-map of the disk always has a fixed point in the closed disk. This is the
consequence of the classical Denjoy-Wolff theorem (see, for example, [1] and refer-
ences therein). In our study, a contraction without fixed points must behave like a
symmetry. Symmetries are contractions in the unit disk, but they are not analytic
(in fact, they are anticonformal, i.e. they preserve the value of angles, but change
their orientation). So we can say that our result agrees with the classical case.
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