THE LOEWNER PROPERTY

Abstract. Notes for the talk given at the Workshop on Carpets, CLE and Dessins, Seattle, August 6-11, 2012, on Mario Bonk's paper Uniformization of Sierpinski carpets in the plane, Invent. math. 186 (2011), 559-665.

Notations

- $\sigma(x, y)$ is the chordal distance on \mathbb{C}_{∞}.
- Σ is the spherical measure on \mathbb{C}_{∞}.
- $\Delta(E, F):=\frac{\operatorname{dist}(E, F)}{\min (\operatorname{diam}(E), \operatorname{diam}(F))}$ is the relative distance between sets E and F.
- $B(x, r):=\{y: \sigma(y, x)<r\}$ is the open ball of radius r centered at x.
- $N_{\delta}(E):=\{x: \operatorname{dist}(x, E)<\delta\}$ is the δ-neighborhood of E.
- $\Gamma(E, F ; \Omega)$ is the family of all closed paths in Ω that connect E and F.
- $\bmod (\Gamma)$ is the modulus of the path family Γ.

Definition. A region $\Omega \subseteq \mathbb{C}_{\infty}$ is called ϕ-Loewner if there exists a non-increasing ϕ : $(0, \infty) \rightarrow(0, \infty)$ such that

$$
\operatorname{Mod}(\Gamma(E, F ; \Omega)) \geq \phi(\Delta(E, F)),
$$

for any two disjoint continua E and F in $\bar{\Omega}$.
Equivalent to: Exists $m=m(t)>0$ such that if $\Delta(E, F) \leq t$ and $\int \rho d \Sigma<m$ then there exists $\gamma \in \Gamma(E, F ; \Omega)$ such that $\int_{\gamma} \rho d s<1$. (Can take $m(t):=\phi(t)$ for ϕ-Loewner region and $\phi(s):=\sup \{m(t): t \geq s\}$.)

1. The unit disk \mathbb{D} is Loewner. An annulus $N_{\delta}(\mathbb{D}) \backslash \overline{\mathbb{D}}$ with $\delta \in(0, \sqrt{2})$ is ϕ-Loewner with $\phi=\phi(\delta)$.
2. The image of a Loewner region under quasi-Möbius map is Loewner.
3. A Jordan region bounded by a quasicircle is Loewner.
4. Collar lemma: For a region $\Omega=\mathbb{C}_{\infty} \backslash \bigcup_{i=1}^{n} D_{i}$ with complementary components D_{i} being s-relatively separated closed Jordan regions with boundaries ∂D_{i} being k-quasicircles, it is possible to put a "Loewner collar" U around the smallest complementary component D_{n} with
thickness proportional to the diameter of D_{n} with a proportionality coefficient depending on s and k, and is ϕ-Loewner with $\phi=\phi(s, k)$.

Proposition (Main statement). Let $\Omega \in \mathbb{C}_{\infty}$,

$$
\Omega=\mathbb{C}_{\infty} \backslash \bigcup_{i=1}^{n} D_{i}
$$

where complementary components D_{i} are s-relatively separated closed Jordan regions with boundaries ∂D_{i} being k-quasicircles. Then Ω is a ϕ-Loewner with $\phi=\phi(n, s, k)$.

Proof. By induction on n. Case $n=1$ is covered by 3 . For $n \geq 2$, consider arbitrary continua E and F in $\bar{\Omega}$ with $\Delta(E, F) \leq t$. We need to show that $\operatorname{Mod}(\Gamma(E, F ; \Omega))$ is large, i.e. if a measure ρ has small mass $\int_{\Omega} \rho^{2} d \Sigma<m$, then it is not admissible, i.e. exists a rectifiable path γ connecting E and F with $\int_{\gamma} \rho d s<1$.

By induction hypothesis, such path already exists in the region with $n-1$ complementary components. Main idea: change the path such that it will not intersect the last component but will be still "short". WLOG assume D_{n} has the smallest diameter $d:=\operatorname{diam}\left(D_{n}\right)$. There exists $m_{1}=m_{1}(n, s, k, t)>0$ such that if $\int \rho^{2} d \Sigma<m_{1}$, then there exists a path α in $\Omega \cup D_{n}$ connecting E and F with

$$
\int_{\alpha} \rho d s<1 / 2
$$

We can assume that α intersects D_{n}. (Otherwise the claim is obvious.)
We will remove the piece of α in D_{n} and connect the remaining pieces by a path β in U, where U is a "Loewner collar" around D_{n} as in Collar Lemma with $\int_{\beta} \rho d s<1 / 2$ to obtain the desired path γ in Ω. Let $c=c(s, k)>0$ be a "thickness" constant from Collar Lemma, i.e. that $N_{c d}\left(D_{n}\right) \backslash D_{n} \subseteq U$. We will need to consider 3 cases:

Case 1. Neither E nor F is contained in $N_{\frac{1}{3} c d}\left(D_{n}\right)$.
Choose a closed (possibly degenerate) subpath α^{\prime} of α from its endpoint x on E to the first point in $\overline{N_{\frac{1}{6} c d}\left(D_{n}\right)}$, call it x^{\prime}. Since a continuum $\alpha^{\prime} \cup E$ is not contained in $N_{\frac{1}{3} c d}\left(D_{n}\right)$, $\alpha^{\prime} \cup E \backslash B\left(x^{\prime}, r\right) \neq \emptyset$, where $r:=\frac{1}{6} c d$. We can find a continuum $E^{\prime} \subseteq \alpha^{\prime} \cup E$ that is contained in $\overline{B\left(x^{\prime}, r\right)}$ with diam $E^{\prime} \geq r=\frac{1}{6} c d$ (pick a connected component of $\alpha^{\prime} \cup E \cap B\left(x^{\prime}, r\right)$ that contains x^{\prime}). Then $E^{\prime} \in \bar{U}$. Likewise, we can select a subpath $\alpha^{\prime \prime}$ of α with endpoint on F and a subcontinuum F^{\prime} of F in \bar{U} with $\operatorname{diam} F^{\prime} \geq \frac{1}{6} c d$. Then

$$
\operatorname{dist}\left(E^{\prime}, F^{\prime}\right) \leq(2 c+1) d \leq(12+6 / c) \min \left(\operatorname{diam}\left(E^{\prime}\right), \operatorname{diam}\left(F^{\prime}\right)\right)
$$

and thus $\Delta\left(E^{\prime}, F^{\prime}\right) \leq C(s, k)$. Since U is ϕ-Loewner with $\phi=\phi(s, k)$, there exists $m_{2}=$ $m_{2}(s, k)>0$ that if $\int \rho^{2} d \Sigma<m_{2}$, then there exists a path β connecting E^{\prime} and F^{\prime} in U with $\int_{\beta} \rho d s<1 / 2$.

Case 2. $t \min (\operatorname{diam}(E), \operatorname{diam}(F)) \geq \frac{1}{3} c d$.
Choose α^{\prime} and $\alpha^{\prime \prime}$ as in Case 1. Similarly, we can find continua $E^{\prime} \subseteq \alpha^{\prime} \cup E$ and $F^{\prime} \subseteq$ $\alpha^{\prime \prime} \cup F$ with $E^{\prime}, F^{\prime} \subseteq \bar{U}$ such that $\left.\operatorname{diam}\left(E^{\prime}\right)\right) \geq \frac{1}{3} \min (\operatorname{diam}(E), c d)$ and $\left.\operatorname{diam}\left(F^{\prime}\right)\right) \geq$ $\frac{1}{3} \min (\operatorname{diam}(F), c d)$. Then

$$
\begin{gathered}
\operatorname{dist}\left(E^{\prime}, F^{\prime}\right) \leq(2 c+1) d \\
\min \left(\operatorname{diam}\left(E^{\prime}\right), \operatorname{diam}\left(F^{\prime}\right)\right) \geq \frac{1}{3} \min (\operatorname{diam}(E), \operatorname{diam}(F), c d) \geq \frac{c d}{9 \max (t, 1)}
\end{gathered}
$$

so $\Delta\left(E^{\prime}, F^{\prime}\right) \leq C(s, k, t)$. By Loewner property of U if $\int \rho^{2} d \Sigma<m_{3}$, where $m_{3}=$ $m_{3}(s, k, t)>0$, then there is a path β connecting E^{\prime} and F^{\prime} in U with $\int_{\beta} \rho d s<1 / 2$.

Case 3. $t \min (\operatorname{diam}(E), \operatorname{diam}(F))<\frac{1}{3} c d$ and either E or F lies in $N_{\frac{1}{3} c d}\left(D_{n}\right)$.
WLOG assume $E \in N_{\frac{1}{3} c d}\left(D_{n}\right)$. Then $E \subseteq \bar{U}$ and by the choice of t

$$
\operatorname{dist}(E, F) \leq t \min (\operatorname{diam}(E), \operatorname{diam}(F))<\frac{1}{3} c d
$$

Pick $x \in E$ and $y \in F$ with $\sigma(x, y)=\operatorname{dist}(E, F)$, and let $r=\frac{1}{3} \min (\operatorname{diam}(F), c d)$. There exists (similarly to the Case 1) a continuum $F^{\prime} \subseteq F \cap \overline{B(y, r)}$ with $y \in F^{\prime}$ and $\operatorname{diam}\left(F^{\prime}\right) \geq$ $r=\frac{1}{3} \min (\operatorname{diam}(F), c d)$. Then

$$
\begin{gathered}
\operatorname{dist}\left(E, F^{\prime}\right)=\operatorname{dist}(E, F)<\frac{1}{3} c d \\
\operatorname{dist}\left(E, F^{\prime}\right) \leq \min \left(t \operatorname{diam}(E), t \operatorname{diam}(F), \frac{1}{3} c d\right) \leq 3 \max (t, 1) \min \left(\operatorname{diam}(E), \operatorname{diam}\left(F^{\prime}\right)\right)
\end{gathered}
$$

Thus $\Delta\left(E, F^{\prime}\right) \leq 3 \max (t, 1)$. Since U is Loewner, if $\int \rho^{2} d \Sigma<m_{4}$, where $m_{4}=m_{4}(s, k, t)>$ 0 , then there is a path β connecting E and F^{\prime} in U with $\int_{\beta} \rho d s<1$. Here we can simply take $\gamma=\beta$, since β connects E to $F^{\prime} \subseteq F$.

Finally, we can take $m=\min \left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}=m(n, s, k, t)$ and if $\int \rho^{2} d \Sigma<m$, then we can find a path γ in Ω connecting E and F that satisfies $\int_{\gamma} \rho d s<1$.

