THE LOEWNER PROPERTY

ABSTRACT. Notes for the talk given at the Workshop on Carpets, CLE and Dessins, Seattle, August 6-11, 2012, on Mario Bonk's paper Uniformization of Sierpinski carpets in the plane, Invent. math. 186 (2011), 559-665.

Notations

- $\sigma(x, y)$ is the chordal distance on \mathbb{C}_{∞} .
- Σ is the spherical measure on \mathbb{C}_{∞} .
- $\Delta(E,F) := \frac{\operatorname{dist}(E,F)}{\min(\operatorname{diam}(E),\operatorname{diam}(F))}$ is the relative distance between sets E and F.
- $B(x,r) := \{y : \sigma(y,x) < r\}$ is the open ball of radius r centered at x.
- $N_{\delta}(E) := \{x : \operatorname{dist}(x, E) < \delta\}$ is the δ -neighborhood of E.
- $\Gamma(E, F; \Omega)$ is the family of all closed paths in Ω that connect E and F.
- mod (Γ) is the modulus of the path family Γ .

Definition. A region $\Omega \subseteq \mathbb{C}_{\infty}$ is called ϕ -Loewner if there exists a non-increasing ϕ : $(0,\infty) \to (0,\infty)$ such that

$$\operatorname{Mod}(\Gamma(E, F; \Omega)) \ge \phi(\Delta(E, F)),$$

for any two disjoint continua E and F in $\overline{\Omega}$.

Equivalent to: Exists m = m(t) > 0 such that if $\Delta(E, F) \leq t$ and $\int \rho d\Sigma < m$ then there exists $\gamma \in \Gamma(E, F; \Omega)$ such that $\int_{\gamma} \rho ds < 1$. (Can take $m(t) := \phi(t)$ for ϕ -Loewner region and $\phi(s) := sup\{m(t) : t \geq s\}$.)

1. The unit disk \mathbb{D} is Loewner. An annulus $N_{\delta}(\mathbb{D}) \setminus \overline{\mathbb{D}}$ with $\delta \in (0, \sqrt{2})$ is ϕ -Loewner with $\phi = \phi(\delta)$.

2. The image of a Loewner region under quasi-Möbius map is Loewner.

3. A Jordan region bounded by a quasicircle is Loewner.

4. Collar lemma: For a region $\Omega = \mathbb{C}_{\infty} \setminus \bigcup_{i=1}^{n} D_i$ with complementary components D_i being *s*-relatively separated closed Jordan regions with boundaries ∂D_i being *k*-quasicircles, it is possible to put a "Loewner collar" U around the smallest complementary component D_n with

thickness proportional to the diameter of D_n with a proportionality coefficient depending on s and k, and is ϕ -Loewner with $\phi = \phi(s, k)$.

Proposition (Main statement). Let $\Omega \in \mathbb{C}_{\infty}$,

$$\Omega = \mathbb{C}_{\infty} \backslash \bigcup_{i=1}^{n} D_{i}$$

where complementary components D_i are s-relatively separated closed Jordan regions with boundaries ∂D_i being k-quasicircles. Then Ω is a ϕ -Loewner with $\phi = \phi(n, s, k)$.

Proof. By induction on n. Case n = 1 is covered by **3.** For $n \ge 2$, consider arbitrary continua E and F in $\overline{\Omega}$ with $\Delta(E, F) \le t$. We need to show that $Mod(\Gamma(E, F; \Omega))$ is large, i.e. if a measure ρ has small mass $\int_{\Omega} \rho^2 d\Sigma < m$, then it is not admissible, i.e. exists a rectifiable path γ connecting E and F with $\int_{\gamma} \rho ds < 1$.

By induction hypothesis, such path already exists in the region with n-1 complementary components. Main idea: change the path such that it will not intersect the last component but will be still "short". WLOG assume D_n has the smallest diameter $d := \text{diam}(D_n)$. There exists $m_1 = m_1(n, s, k, t) > 0$ such that if $\int \rho^2 d\Sigma < m_1$, then there exists a path α in $\Omega \cup D_n$ connecting E and F with

$$\int_{\alpha} \rho ds < 1/2.$$

We can assume that α intersects D_n . (Otherwise the claim is obvious.)

We will remove the piece of α in D_n and connect the remaining pieces by a path β in U, where U is a "Loewner collar" around D_n as in Collar Lemma with $\int_{\beta} \rho ds < 1/2$ to obtain the desired path γ in Ω . Let c = c(s, k) > 0 be a "thickness" constant from Collar Lemma, i.e. that $N_{cd}(D_n) \setminus D_n \subseteq U$. We will need to consider 3 cases:

Case 1. Neither *E* nor *F* is contained in $N_{\frac{1}{2}cd}(D_n)$.

Choose a closed (possibly degenerate) subpath α' of α from its endpoint x on E to the first point in $\overline{N_{\frac{1}{6}cd}(D_n)}$, call it x'. Since a continuum $\alpha' \cup E$ is not contained in $N_{\frac{1}{3}cd}(D_n)$, $\alpha' \cup E \setminus B(x', r) \neq \emptyset$, where $r := \frac{1}{6}cd$. We can find a continuum $E' \subseteq \alpha' \cup E$ that is contained in $\overline{B(x', r)}$ with diam $E' \geq r = \frac{1}{6}cd$ (pick a connected component of $\alpha' \cup E \cap B(x', r)$ that contains x'). Then $E' \in \overline{U}$. Likewise, we can select a subpath α'' of α with endpoint on F and a subcontinuum F' of F in \overline{U} with diam $F' \geq \frac{1}{6}cd$. Then

$$dist(E', F') \le (2c+1)d \le (12+6/c)\min(diam(E'), diam(F')),$$

and thus $\Delta(E', F') \leq C(s, k)$. Since U is ϕ -Loewner with $\phi = \phi(s, k)$, there exists $m_2 = m_2(s, k) > 0$ that if $\int \rho^2 d\Sigma < m_2$, then there exists a path β connecting E' and F' in U with $\int_{\beta} \rho ds < 1/2$.

Case 2. $t \min(\operatorname{diam}(E), \operatorname{diam}(F)) \ge \frac{1}{3}cd$.

Choose α' and α'' as in Case 1. Similarly, we can find continua $E' \subseteq \alpha' \cup E$ and $F' \subseteq \alpha'' \cup F$ with $E', F' \subseteq \overline{U}$ such that $\operatorname{diam}(E') \geq \frac{1}{3} \min(\operatorname{diam}(E), cd)$ and $\operatorname{diam}(F') \geq \frac{1}{3} \min(\operatorname{diam}(F), cd)$. Then

$$\operatorname{dist}(E',F') \leq (2c+1)d,$$
$$\min(\operatorname{diam}(E'),\operatorname{diam}(F')) \geq \frac{1}{3}\min(\operatorname{diam}(E),\operatorname{diam}(F),cd) \geq \frac{cd}{9\max(t,1)}$$

so $\Delta(E', F') \leq C(s, k, t)$. By Loewner property of U if $\int \rho^2 d\Sigma < m_3$, where $m_3 = m_3(s, k, t) > 0$, then there is a path β connecting E' and F' in U with $\int_{\beta} \rho ds < 1/2$.

Case 3. $t \min(\operatorname{diam}(E), \operatorname{diam}(F)) < \frac{1}{3}cd$ and either E or F lies in $N_{\frac{1}{3}cd}(D_n)$.

WLOG assume $E \in N_{\frac{1}{2}cd}(D_n)$. Then $E \subseteq \overline{U}$ and by the choice of t

$$\operatorname{dist}(E, F) \le t \min(\operatorname{diam}(E), \operatorname{diam}(F)) < \frac{1}{3}cd$$

Pick $x \in E$ and $y \in F$ with $\sigma(x, y) = \operatorname{dist}(E, F)$, and let $r = \frac{1}{3} \min(\operatorname{diam}(F), cd)$. There exists (similarly to the Case 1) a continuum $F' \subseteq F \cap \overline{B(y, r)}$ with $y \in F'$ and $\operatorname{diam}(F') \ge r = \frac{1}{3} \min(\operatorname{diam}(F), cd)$. Then

$$\operatorname{dist}(E, F') = \operatorname{dist}(E, F) < \frac{1}{3}cd,$$

 $\operatorname{dist}(E, F') \le \min(t \operatorname{diam}(E), t \operatorname{diam}(F), \frac{1}{3}cd) \le 3\max(t, 1)\min(\operatorname{diam}(E), \operatorname{diam}(F')).$

Thus $\Delta(E, F') \leq 3 \max(t, 1)$. Since U is Loewner, if $\int \rho^2 d\Sigma < m_4$, where $m_4 = m_4(s, k, t) > 0$, then there is a path β connecting E and F' in U with $\int_{\beta} \rho ds < 1$. Here we can simply take $\gamma = \beta$, since β connects E to $F' \subseteq F$.

Finally, we can take $m = \min\{m_1, m_2, m_3, m_4\} = m(n, s, k, t)$ and if $\int \rho^2 d\Sigma < m$, then we can find a path γ in Ω connecting E and F that satisfies $\int_{\gamma} \rho ds < 1$.