
THE LOEWNER PROPERTY

Abstract. Notes for the talk given at the Workshop on Carpets, CLE and Dessins, Seattle,
August 6-11, 2012, on Mario Bonk’s paper Uniformization of Sierpinski carpets in the plane,
Invent. math. 186 (2011), 559-665.

Notations

• σ(x, y) is the chordal distance on C∞.

• Σ is the spherical measure on C∞.

• ∆(E,F ) :=
dist(E,F )

min(diam(E), diam(F ))
is the relative distance between sets E and F .

• B(x, r) := {y : σ(y, x) < r} is the open ball of radius r centered at x.

• Nδ(E) := {x : dist(x,E) < δ} is the δ-neighborhood of E.

• Γ(E,F ; Ω) is the family of all closed paths in Ω that connect E and F .

• mod (Γ) is the modulus of the path family Γ.

Definition. A region Ω ⊆ C∞ is called φ-Loewner if there exists a non-increasing φ :

(0,∞)→ (0,∞) such that

Mod(Γ(E,F ; Ω)) ≥ φ(∆(E,F )),

for any two disjoint continua E and F in Ω.

Equivalent to: Exists m = m(t) > 0 such that if ∆(E,F ) ≤ t and
∫
ρdΣ < m then there

exists γ ∈ Γ(E,F ; Ω) such that
∫
γ
ρds < 1. (Can take m(t) := φ(t) for φ-Loewner region

and φ(s) := sup{m(t) : t ≥ s}.)

1. The unit disk D is Loewner. An annulus Nδ(D)\D with δ ∈ (0,
√

2) is φ-Loewner with

φ = φ(δ).

2. The image of a Loewner region under quasi-Möbius map is Loewner.

3. A Jordan region bounded by a quasicircle is Loewner.

4. Collar lemma: For a region Ω = C∞\
⋃n
i=1Di with complementary components Di being

s-relatively separated closed Jordan regions with boundaries ∂Di being k-quasicircles, it is

possible to put a “Loewner collar” U around the smallest complementary component Dn with
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thickness proportional to the diameter of Dn with a proportionality coefficient depending on

s and k, and is φ-Loewner with φ = φ(s, k).

Proposition (Main statement). Let Ω ∈ C∞,

Ω = C∞\
n⋃
i=1

Di

where complementary components Di are s-relatively separated closed Jordan regions with

boundaries ∂Di being k-quasicircles. Then Ω is a φ-Loewner with φ = φ(n, s, k).

Proof. By induction on n. Case n = 1 is covered by 3. For n ≥ 2, consider arbitrary continua

E and F in Ω with ∆(E,F ) ≤ t. We need to show that Mod(Γ(E,F ; Ω)) is large, i.e. if

a measure ρ has small mass
∫

Ω
ρ2dΣ < m, then it is not admissible, i.e. exists a rectifiable

path γ connecting E and F with
∫
γ
ρds < 1.

By induction hypothesis, such path already exists in the region with n − 1 complementary

components. Main idea: change the path such that it will not intersect the last component

but will be still “short”. WLOG assume Dn has the smallest diameter d := diam(Dn). There

exists m1 = m1(n, s, k, t) > 0 such that if
∫
ρ2dΣ < m1, then there exists a path α in Ω∪Dn

connecting E and F with ∫
α

ρds < 1/2.

We can assume that α intersects Dn. (Otherwise the claim is obvious.)

We will remove the piece of α in Dn and connect the remaining pieces by a path β in U ,

where U is a “Loewner collar” around Dn as in Collar Lemma with
∫
β
ρds < 1/2 to obtain

the desired path γ in Ω. Let c = c(s, k) > 0 be a “thickness” constant from Collar Lemma,

i.e. that Ncd(Dn)\Dn ⊆ U . We will need to consider 3 cases:

Case 1. Neither E nor F is contained in N 1
3
cd(Dn).

Choose a closed (possibly degenerate) subpath α′ of α from its endpoint x on E to the

first point in N 1
6
cd(Dn), call it x′. Since a continuum α′ ∪ E is not contained in N 1

3
cd(Dn),

α′∪E\B(x′, r) 6= ∅, where r := 1
6
cd. We can find a continuum E ′ ⊆ α′∪E that is contained

in B(x′, r) with diamE ′ ≥ r = 1
6
cd (pick a connected component of α′ ∪ E ∩ B(x′, r) that

contains x′). Then E ′ ∈ U . Likewise, we can select a subpath α′′ of α with endpoint on F

and a subcontinuum F ′ of F in U with diamF ′ ≥ 1
6
cd. Then

dist(E ′, F ′) ≤ (2c+ 1)d ≤ (12 + 6/c) min(diam(E ′), diam(F ′)),



THE LOEWNER PROPERTY 3

and thus ∆(E ′, F ′) ≤ C(s, k). Since U is φ-Loewner with φ = φ(s, k), there exists m2 =

m2(s, k) > 0 that if
∫
ρ2dΣ < m2, then there exists a path β connecting E ′ and F ′ in U with∫

β
ρds < 1/2.

Case 2. tmin(diam(E), diam(F )) ≥ 1
3
cd.

Choose α′ and α′′ as in Case 1. Similarly, we can find continua E ′ ⊆ α′ ∪ E and F ′ ⊆
α′′ ∪ F with E ′, F ′ ⊆ U such that diam(E ′)) ≥ 1

3
min(diam(E), cd) and diam(F ′)) ≥

1
3

min(diam(F ), cd). Then

dist(E ′, F ′) ≤ (2c+ 1)d,

min(diam(E ′), diam(F ′)) ≥ 1

3
min(diam(E), diam(F ), cd) ≥ cd

9 max(t, 1)
,

so ∆(E ′, F ′) ≤ C(s, k, t). By Loewner property of U if
∫
ρ2dΣ < m3, where m3 =

m3(s, k, t) > 0, then there is a path β connecting E ′ and F ′ in U with
∫
β
ρds < 1/2.

Case 3. tmin(diam(E), diam(F )) < 1
3
cd and either E or F lies in N 1

3
cd(Dn).

WLOG assume E ∈ N 1
3
cd(Dn). Then E ⊆ U and by the choice of t

dist(E,F ) ≤ tmin(diam(E), diam(F )) <
1

3
cd.

Pick x ∈ E and y ∈ F with σ(x, y) = dist(E,F ), and let r = 1
3

min(diam(F ), cd). There

exists (similarly to the Case 1) a continuum F ′ ⊆ F ∩ B(y, r) with y ∈ F ′ and diam(F ′) ≥
r = 1

3
min(diam(F ), cd). Then

dist(E,F ′) = dist(E,F ) <
1

3
cd,

dist(E,F ′) ≤ min(t diam(E), t diam(F ),
1

3
cd) ≤ 3 max(t, 1) min(diam(E), diam(F ′)).

Thus ∆(E,F ′) ≤ 3 max(t, 1). Since U is Loewner, if
∫
ρ2dΣ < m4, where m4 = m4(s, k, t) >

0, then there is a path β connecting E and F ′ in U with
∫
β
ρds < 1. Here we can simply

take γ = β, since β connects E to F ′ ⊆ F .

Finally, we can take m = min{m1,m2,m3,m4} = m(n, s, k, t) and if
∫
ρ2dΣ < m, then we

can find a path γ in Ω connecting E and F that satisfies
∫
γ
ρds < 1. �


