Backward iteration in the unit ball

Olena Ostapyuk

Department of Mathematics Kansas State University

2010 Fall Eastern AMS Sectional Meeting Syracuse, NY

Olena Ostapyuk (K-State)

Backward iteration in the unit ball

10-02-2010 1 / 20

A (10) A (10) A (10)

Let *f* be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of *f* $f_n = \underbrace{f \circ \ldots \circ f}_{f_n}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z-w}{1-\overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

Let *f* be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$

n-th iterate of $f f_n = \underbrace{f \circ \ldots \circ f}_{f}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff)

Let *f* be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of *f* $f_n = \underbrace{f \circ \ldots \circ f}_{f_n}$

n times By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z-w}{1-\overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

Let *f* be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of *f* $f_n = \underbrace{f \circ \ldots \circ f}_{f_n}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff)

Let *f* be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of *f* $f_n = \underbrace{f \circ \ldots \circ f}_{f_n}$

By **Schwarz's lemma**, f is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|$$

Theorem (Denjoy-Wolff)

```
Cases: 1.p \in \mathbb{D} f is called elliptic
```

```
2.p \in \partial \mathbb{D}, f'(p) < 1 hyperbolic
```

```
3.p \in \partial \mathbb{D}, f'(p) = 1 parabolic
```

Cases: 1. $p \in \mathbb{D}$ *f* is called elliptic

2.*p* ∈ ∂ D, f'(p) < 1 hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

A (10) A (10) A (10)

Cases: $1.p \in \mathbb{D}$ *f* is called elliptic

 $2.p \in \partial \mathbb{D}, f'(p) < 1$ hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

A (10) A (10) A (10)

Cases: $1.p \in \mathbb{D}$ *f* is called elliptic

 $2.p \in \partial \mathbb{D}, f'(p) < 1$ hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

< 回 > < 三 > < 三 >

Cases: 1. $p \in \mathbb{D}$ *f* is called elliptic

 $2.p \in \partial \mathbb{D}, f'(p) < 1$ hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic

< 回 ト < 三 ト < 三

If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point *p*, and multiplier $c = f'(p) \leq 1$:

 $\forall R > 0 \quad f(H(p, R)) \subseteq H(p, cR),$

where H(p, R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

$$H(p, R) := \left\{ z \in \mathbb{D} : \frac{|p - z|^2}{1 - |z|^2} < R \right\}$$

< ロ > < 同 > < 回 > < 回 >

If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point *p*, and multiplier $c = f'(p) \leq 1$:

 $\forall R > 0 \quad f(H(p, R)) \subseteq H(p, cR),$

where H(p, R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

$$H(p,R) := \left\{ z \in \mathbb{D} : rac{|p-z|^2}{1-|z|^2} < R
ight\}$$

< ロ > < 同 > < 回 > < 回 >

If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point p, and multiplier $c = f'(p) \leq 1$:

 $\forall R > 0$ $f(H(p, R)) \subseteq H(p, cR),$

where H(p, R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$

2. If $q \neq p$, then q is a **boundary repelling fixed point** (BRFP) (i.e. f(q) = q and $1 < f'(q) < \infty$). If q = p, f is of parabolic type. 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential. 4. If q = p, then $z_n \rightarrow q$ tangentially.

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$

2. If $q \neq p$, then q is a **boundary repelling fixed point** (BRFP) (i.e. f(q) = q and $1 < f'(q) < \infty$). If q = p, f is of parabolic type. 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential. 4. If q = p, then $z_n \rightarrow q$ tangentially.

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

1. $z_n \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$

2. If $q \neq p$, then q is a **boundary repelling fixed point** (*BRFP*) (i.e. f(q) = q and $1 < f'(q) < \infty$). If q = p, f is of parabolic type. 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential. 4. If q = p, then $z_n \rightarrow q$ tangentially.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$

2. If $q \neq p$, then q is a **boundary repelling fixed point** (BRFP) (i.e. f(q) = q and $1 < f'(q) < \infty$). If q = p, f is of parabolic type. 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential. 4. If q = p, then $z_n \rightarrow q$ tangentially.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

1. $z_n \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$

2. If $q \neq p$, then q is a **boundary repelling fixed point** (BRFP) (i.e. f(q) = q and $1 < f'(q) < \infty$). If q = p, f is of parabolic type.

3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential. 4. If q = p, then $z_n \rightarrow q$ tangentially.

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$

2. If $q \neq p$, then q is a **boundary repelling fixed point** (*BRFP*) (i.e. f(q) = q and $1 < f'(q) < \infty$). If q = p, f is of parabolic type. 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.

4. If q = p, then $z_n \rightarrow q$ tangentially.

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d(z_n, z_{n+1}) \le a < 1$

Theorem (Poggi-Corradini, 2003)

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

1. $z_n \to q \in \partial \mathbb{D},$ and q is a fixed point with a well-defined multiplier $f'(q) < \infty$

2. If $q \neq p$, then q is a **boundary repelling fixed point** (*BRFP*) (i.e. f(q) = q and $1 < f'(q) < \infty$). If q = p, f is of parabolic type. 3. When q is *BRFP*, the convergence $z_n \rightarrow q$ is non-tangential. 4. If q = p, then $z_n \rightarrow q$ tangentially.

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, \ \|Z\|^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : ||Z|| < 1\}$

Julia's lemma in \mathbb{B}^N

Let *f* be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that $\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$ Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^N$ and radius R > 0: $H(X, R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z, X)|^2}{1 - ||Z||^2} < R \right\}$

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, ||Z||^2 = (Z, Z)$
Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : ||Z|| < 1\}$

Julia's lemma in \mathbb{B}^N

Let *f* be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that $\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$ Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^N$ and radius R > 0: $H(X, R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z, X)|^2}{1 - ||Z||^2} < R \right\}$

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, \ \|Z\|^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : ||Z|| < 1\}$

Julia's lemma in \mathbb{B}^N

Let *f* be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that $\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$ Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^N$ and radius R > 0: $H(X, R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z, X)|^2}{1 - ||Z||^2} < R \right\}$

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, ||Z||^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : \|Z\| < 1\}$

Julia's lemma in \mathbb{B}^N

Let *f* be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that $\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$ Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center
$$X \in \partial \mathbb{B}^N$$
 and radius $R > 0$:
 $H(X, R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z, X)|^2}{1 - ||Z||^2} < R \right\}$

Theorem (MacCluer, 1983)

If *f* has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of *f* at *p*.

f is called hyperbolic if c < 1 and parabolic if c = 1.

We will call *f* **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and *f* is not unitary of any slice (i.e. with $||f(Z)|| < ||Z|| \ \forall Z \in \mathbb{B}^N \setminus \{0\}$).

Siegel domain: $\mathbb{H}^{N} = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^{2}$

Cayley transform: $C : \mathbb{B}^N \to \mathbb{H}^N$ $C((z, w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad C^{-1}((z, w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (MacCluer, 1983)

If *f* has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of *f* at *p*.

f is called hyperbolic if c < 1 and parabolic if c = 1.

We will call *f* **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and *f* is not unitary of any slice (i.e. with $||f(Z)|| < ||Z|| \ \forall Z \in \mathbb{B}^N \setminus \{0\}$).

Siegel domain: $\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^2\}$

Cayley transform: $C : \mathbb{B}^N \to \mathbb{H}^N$ $C((z, w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad C^{-1}((z, w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (MacCluer, 1983)

If *f* has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of *f* at *p*. *f* is called **hyperbolic** if c < 1 and **parabolic** if c = 1.

We will call *f* **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and *f* is not unitary of any slice (i.e. with $||f(Z)|| < ||Z|| \ \forall Z \in \mathbb{B}^N \setminus \{0\}$).

Siegel domain: $\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^2\}$

Cayley transform: $C : \mathbb{B}^N \to \mathbb{H}^N$ $C((z, w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad C^{-1}((z, w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$

Theorem (MacCluer, 1983)

If *f* has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of *f* at *p*. *f* is called **hyperbolic** if c < 1 and **parabolic** if c = 1.

We will call *f* **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and *f* is not unitary of any slice (i.e. with $||f(Z)|| < ||Z|| \ \forall Z \in \mathbb{B}^N \setminus \{0\}$).

Siegel domain: $\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^2\}$

Cayley transform:
$$C : \mathbb{B}^N \to \mathbb{H}^N$$

 $C((z, w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad C^{-1}((z, w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$

A (10) A (10)

Let *f* be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \le a < 1$. Then: 1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$

2. $\{Z_n\}$ stays in a Koranyi region with vertex τ 3. Julia's lemma holds for τ with multiplier $\alpha \ge \frac{1}{c}$, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \forall R > 0$

Definition

A point $\tau \in \partial \mathbb{B}^N$ is called a **boundary repelling fixed point** if Julia's lemma holds for τ with multiplier $\alpha > 1$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then: 1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$ 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \forall R > 0$

Definition

A point $\tau \in \partial \mathbb{B}^N$ is called a **boundary repelling fixed point** if Julia's lemma holds for τ with multiplier $\alpha > 1$.

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then: 1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$ 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \ \forall R > 0$

Definition

A point $\tau \in \partial \mathbb{B}^N$ is called a **boundary repelling fixed point** if Julia's lemma holds for τ with multiplier $\alpha > 1$.

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then: 1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$ 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \ \forall R > 0$

Definition

A point $\tau \in \partial \mathbb{B}^N$ is called a boundary repelling fixed point if Julia's lemma holds for τ with multiplier $\alpha > 1$.

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then: 1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$ 2. $\{Z_n\}$ stays in a Koranyi region with vertex τ 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \ \forall R > 0$

Definition

A point $\tau \in \partial \mathbb{B}^N$ is called a **boundary repelling fixed point** if Julia's lemma holds for τ with multiplier $\alpha > 1$.

Idea of the proof in hyperbolic case:

 $t_n := \operatorname{Re} z_n - \|w_n\|^2 \sim c^n$ (by Julia's lemma)

 $\|pr(Z_n) - pr(Z_{n+1})\| \le C\sqrt{t_n} \sim c^{n/2}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Idea of the proof in hyperbolic case:

 $t_n := \operatorname{Re} z_n - \|w_n\|^2 \sim c^n$ (by Julia's lemma)

 $\|pr(Z_n) - pr(Z_{n+1})\| \le C\sqrt{t_n} \sim c^{n/2}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Idea of the proof in hyperbolic case:

 $t_n := \operatorname{Re} z_n - \|w_n\|^2 \sim c^n$ (by Julia's lemma)

$$\|pr(Z_n) - pr(Z_{n+1})\| \leq C\sqrt{t_n} \sim c^{n/2}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

In elliptic case we need the following

Lemma

Let *f* be a self-map of the unit ball \mathbb{B}^N fixing zero, not unitary on any slice. Fix $r_0 > 0$, define $M(r) := \max ||f(r\mathbb{B}^N)||$, $r \in [r_0, 1)$. Then there exists c < 1 such that

$$\frac{1-r}{1-M(r)} \leq c \quad \forall r \in [r_0, 1)$$

In elliptic case we need the following

Lemma

Let *f* be a self-map of the unit ball \mathbb{B}^N fixing zero, not unitary on any slice. Fix $r_0 > 0$, define $M(r) := \max ||f(r\mathbb{B}^N)||$, $r \in [r_0, 1)$. Then there exists c < 1 such that

$$\frac{1-r}{1-M(r)} \le c \quad \forall r \in [r_0, 1)$$

Olena Ostapyuk (K-State)

Backward iteration in the unit ball

10-02-2010 10 / 20

A BRFP with multiplier α is called **isolated** if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated, so the above characterization is "if and only if".

< ロ > < 同 > < 回 > < 回 >

A BRFP with multiplier α is called **isolated** if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated, so the above characterization is "if and only if".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A BRFP with multiplier α is called **isolated** if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated, so the above characterization is "if and only if".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (O —, 2010):

 $f:\mathbb{H}^2 o\mathbb{H}^2,$ $f(z,w)=(2z+w^2,w),$ hyperbolic with multiplier 1/2 at the Denjoy-Wolff point ∞

Set of BRFP's: $\left\{ (r^2, ir) | r \in \mathbb{R} \right\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (O —, 2010):

 $f: \mathbb{H}^2 \to \mathbb{H}^2$, $f(z, w) = (2z + w^2, w)$, hyperbolic with multiplier 1/2 at the Denjoy-Wolff point ∞

Set of BRFP's: $\{(r^2, ir) | r \in \mathbb{R}\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (O —, 2010):

 $f: \mathbb{H}^2 \to \mathbb{H}^2$, $f(z, w) = (2z + w^2, w)$, hyperbolic with multiplier 1/2 at the Denjoy-Wolff point ∞

Set of BRFP's: $\{(r^2, ir) | r \in \mathbb{R}\}$

A B A A B A

Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a **stable set** at q.

The stable set at each BRFP (r, ir^2) in the Example 1 is $\{(z, r) | \text{Re } z > r^2\}$ and has dimension 1.

Conjecture

BRFPs in \mathbb{H}^N with stable set of dimension N are isolated.

(The conjecture is true for N = 1 since all BRFPs are isolated in 1-dimensional case).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a **stable set** at q.

The stable set at each BRFP (r, ir^2) in the Example 1 is $\{(z, r) | \text{Re } z > r^2\}$ and has dimension 1.

Conjecture

BRFPs in \mathbb{H}^N with stable set of dimension N are isolated.

(The conjecture is true for N = 1 since all BRFPs are isolated in 1-dimensional case).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a **stable set** at q.

```
The stable set at each BRFP (r, ir^2) in the Example 1 is \{(z, r) | \text{Re } z > r^2\} and has dimension 1.
```

Conjecture

BRFPs in \mathbb{H}^N with stable set of dimension N are isolated.

(The conjecture is true for N = 1 since all BRFPs are isolated in 1-dimensional case).

A (10) A (10)

Conjugations

Theorem 2. (O —, 2009) (N-dimensional case, backward iteration)

Suppose $f : \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha}w)$

$$\psi \circ \eta(\boldsymbol{Z}) = \boldsymbol{f} \circ \psi(\boldsymbol{Z}),$$

via an analytic intertwining map ψ .

Construction of ψ :

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

$$\psi(z,w)=\psi(z,0)$$

and is essentially one-dimensional map

Olena Ostapyuk (K-State)

Conjugations

Theorem 2. (O —, 2009) (N-dimensional case, backward iteration)

Suppose $f : \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha}w)$

$$\psi \circ \eta(\boldsymbol{Z}) = \boldsymbol{f} \circ \psi(\boldsymbol{Z}),$$

via an analytic intertwining map ψ .

Construction of ψ :

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

 $\psi(z,w)=\psi(z,0)$

and is essentially one-dimensional map

Olena Ostapyuk (K-State)

Conjugations

Theorem 2. (O —, 2009) (N-dimensional case, backward iteration)

Suppose $f : \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha}w)$

$$\psi \circ \eta(\boldsymbol{Z}) = \boldsymbol{f} \circ \psi(\boldsymbol{Z}),$$

via an analytic intertwining map ψ .

Construction of ψ :

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

$$\psi(\mathbf{Z},\mathbf{W})=\psi(\mathbf{Z},\mathbf{0})$$

and is essentially one-dimensional map.

Olena Ostapyuk (K-State)

★ E ► E ∽ Q C 10-02-2010 15/20

イロト イヨト イヨト イヨト

Theorem 3. (O —, 2009)

Under some regularity condition, it is possible to improve ψ such that

 $\psi(z,w)=\psi(p_L(z,w)),$

where p_L is a projection on the first L dimensions.

Condition is

$$f(z, w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2}))$$

e.g. $A = Diag(\sqrt{lpha}, \dots \sqrt{lpha}, eta_1, \dots eta_{N-L})$, where $eta_j < \sqrt{lpha}$

Theorem 3. (O —, 2009)

Under some regularity condition, it is possible to improve ψ such that

 $\psi(z,w)=\psi(p_L(z,w)),$

where p_L is a projection on the first L dimensions.

Condition is

$$f(z, w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2}))$$

e.g. $A = Diag(\sqrt{\alpha}, \dots, \sqrt{\alpha}, \beta_1, \dots, \beta_{N-L})$, where $\beta_j < \sqrt{\alpha}$

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

A (10) A (10)

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

A (10) F (10)

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

- b > 0 parabolic non-zero step type
- b = 0 parabolic zero-step type

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

- *b* > 0 parabolic non-zero step type
- b = 0 parabolic zero-step type

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

- b > 0 parabolic non-zero step type
- b = 0 parabolic zero-step type

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

- *b* > 0 parabolic non-zero step type
- b = 0 parabolic zero-step type

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Claim

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \to 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^N are:

• Automorphisms (translations):

 $(z,w)\longmapsto (z+z_0+2\langle w,w_0
angle,w+w_0)$ for some $(z_0,w_0)\in\partial\mathbb{H}^N.$

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Claim

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \rightarrow 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^N are:

• Automorphisms (translations):

 $(z,w)\longmapsto (z+z_0+2\langle w,w_0
angle,w+w_0)$ for some $(z_0,w_0)\in\partial\mathbb{H}^N.$

イロト 不得 トイヨト イヨト

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Claim

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \rightarrow 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^N are:

Automorphisms (translations):

 $(z,w)\longmapsto (z+z_0+2\langle w,w_0
angle,w+w_0)$ for some $(z_0,w_0)\in\partial\mathbb{H}^N.$

• Example 2. (O ---, 2010):

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy₀,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

f has a 1-dimensional real submanifold $\{(iy_0+t^2,t)|t\in\mathbb{R}\}$ of BRFPs.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Example 2. (O ---, 2010):

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy₀, construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then: *f* is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

• Example 2. (O ---, 2010):

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy₀, construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then: *f* is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

• Example 2. (O ---, 2010):

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy_0 , construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then: f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ . f has a 1-dimensional real submanifold $\{(iy_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs.

• Example 2. (O ---, 2010):

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy₀, construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then: f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ . f has a 1-dimensional real submanifold $\{(iy_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs.

Olena Ostapyuk (K-State)

Backward iteration in the unit ball

Future goals

• Dimension of stable set at the BRFP q

• Conjugation for non-isolated fixed points

• Parabolic case

A (1) > A (2) > A

Future goals

• Dimension of stable set at the BRFP *q*

Conjugation for non-isolated fixed points

• Parabolic case

Future goals

• Dimension of stable set at the BRFP *q*

Conjugation for non-isolated fixed points

Parabolic case