Backward iteration in the unit ball

Olena Ostapyuk

Department of Mathematics
Kansas State University

2010 Fall Eastern AMS Sectional Meeting Syracuse, NY

One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}$
n times
By Schwarz's Immma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|
$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \bar{D}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p.
if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$
if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of
non-tangential limits

One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$

n times
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|
$$

Theorem (Denjoy-Wolff)
If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \bar{D}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p.
if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$
if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of
non-tangential limits

One-dimensional case

Forward iteration

```
Let f}\mathrm{ be analytic self-map of }\mathbb{D}={z:|z|<1
n-th iterate of }f\mp@subsup{f}{n}{}=\mp@subsup{\underbrace}{n\mathrm{ times}}{f\circ\ldots\circf
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic
metric
d(z,w)=|\frac{z-w}{1-\overline{W}z}
Theorem (Denjoy-Wolff)
If a self-map of the disk \(f\) is not an elliptic automorphism, then there exist a unique point \(p \in \mathbb{D}\) such that the sequence \(f_{n}(z)\) converges uniformly on compact subsets to \(p\).
if \(p \in \mathbb{D}\), then \(f(p)=p\) and \(\left|f^{\prime}(p)\right|<1\)
if \(p \in \partial \mathbb{D}\), then \(f(p)=p\) and \(0<f^{\prime}(p) \leq 1\) in the sense of
non-tangential limits
```


One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}_{n \text { times }}$
n times
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|
$$

> Theorem (Denjoy-Wolff)
> If a self-man of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \mathbb{D}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$ if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of non-tangential limits

One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}_{n \text { tios }}$
n times
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{W} z}\right|
$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$ if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of non-tangential limits

The point p is called the Denjoy-Wolff point of f.

Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic

The point p is called the Denjoy-Wolff point of f.
Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
$3 . p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Elliptic

The point p is called the Denjoy-Wolff point of f.
Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
$3 . p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Hyperbolic

The point p is called the Denjoy-Wolff point of f.
Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
3. $p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Parabolic

The point p is called the Denjoy-Wolff point of f.
Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
3. $p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Elliptic

Hyperbolic

Parabolic

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R)
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R),
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

$$
H(p, R):=\left\{z \in \mathbb{D}: \frac{|p-z|^{2}}{1-|z|^{2}}<R\right\}
$$

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R),
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

$$
H(p, R):=\left\{z \in \mathbb{D}: \frac{|p-z|^{2}}{1-|z|^{2}}<R\right\}
$$

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)
Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e.
$f(q)=q$ and $\left.1<f^{\prime}(q)<\infty\right)$. If $q=p, f$ is of parabolic type.
3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential.
4. If $q=p$, then $z_{n} \rightarrow q$ tangentially.

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

> Theorem (Poggi-Corradini, 2003)
> Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$ Then:
> 1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)$ 2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. $f(q)=q$ and $\left.1<f^{\prime}(q)<\infty\right)$. If $q=p, f$ is of parabolic type. 3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential. 4. If $q=p$, then $z_{n} \rightarrow q$ tangentially.

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. $f(q)=q$ and $\left.1<f^{\prime}(q)<\infty\right)$. If $q=p, f$ is of parabolic type. 3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential. 4. If $q=p$, then $z_{n} \rightarrow q$ tangentially.

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. $f(q)=q$ and $\left.1<f^{\prime}(q)<\infty\right)$. If $q=p, f$ is of parabolic type.

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e.
$f(q)=q$ and $\left.1<f^{\prime}(q)<\infty\right)$. If $q=p, f$ is of parabolic type.
3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential.

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e.
$f(q)=q$ and $\left.1<f^{\prime}(q)<\infty\right)$. If $q=p, f$ is of parabolic type.
3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential.
4. If $q=p$, then $z_{n} \rightarrow q$ tangentially.

Multi-dimensional case

$$
\begin{aligned}
& \mathbb{C}^{N} \text {, inner product }(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z) \\
& \text { Unit ball } \mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\} \\
& \text { Julia's Iemma in } \mathbb{B}^{N} \\
& \text { Letf be a holomorphic self-map of } \mathbb{B}^{N} \text { and } X \in \partial \mathbb{B}^{N} \text { such that } \\
& \text { liminf } 1-\|f(Z)\| \\
& Z Z X-\|Z\| \\
& \text { Then there exists a unique } Y \in \partial \mathbb{B}^{N} \text { such that } \forall R>0 \\
& f(H(X, R)) \subset H(Y, a R) \text {. }
\end{aligned}
$$

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z)$
Unit ball $\mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\}$
Julia's lemma in \mathbb{B}^{N}
Let f be a holomorphic self-map of \mathbb{B}^{N} and $X \in \partial \mathbb{B}^{N}$ such that

Then there exists a unique $Y \in \partial \mathbb{B}^{N}$ such that $\forall R>0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^{N}$ and radius $R>0$:

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z)$
Unit ball $\mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\}$

Julia's lemma in \mathbb{B}^{N}

Let f be a holomorphic self-map of \mathbb{B}^{N} and $X \in \partial \mathbb{B}^{N}$ such that $\liminf _{Z \rightarrow X} \frac{1-\|f(Z)\|}{1-\|Z\|}=\alpha<\infty$
Then there exists a unique $Y \in \partial \mathbb{B}^{N}$ such that $\forall R>0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z)$
Unit ball $\mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\}$

Julia's lemma in \mathbb{B}^{N}

Let f be a holomorphic self-map of \mathbb{B}^{N} and $X \in \partial \mathbb{B}^{N}$ such that $\liminf _{Z \rightarrow X} \frac{1-\|f(Z)\|}{1-\|Z\|}=\alpha<\infty$
Then there exists a unique $Y \in \partial \mathbb{B}^{N}$ such that $\forall R>0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^{N}$ and radius $R>0$:
$H(X, R)=\left\{Z \in \mathbb{B}^{N}: \frac{|1-(Z, X)|^{2}}{1-\|Z\|^{2}}<R\right\}$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.
We will call f elliptic if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with

Siegel domain:

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.
We will call f elliptic if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\|f(Z)\|<\|Z\| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.
Siegel domain:

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.
We will call f elliptic if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\|f(Z)\|<\|Z\| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.

Siegel domain:

$\mathbb{H}^{N}=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1}: \operatorname{Rez}>\|w\|^{2}\right\}$
\square

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.
We will call f elliptic if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\|f(Z)\|<\|Z\| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.

Siegel domain:

$\mathbb{H}^{N}=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1}: \operatorname{Rez}>\|w\|^{2}\right\}$
Cayley transform: $\mathcal{C}: \mathbb{B}^{N} \rightarrow \mathbb{H}^{N}$
$\mathcal{C}((z, w))=\left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad \mathcal{C}^{-1}((z, w))=\left(\frac{z-1}{z+1}, \frac{2 w}{z+1}\right)$

Theorem 1.(O —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that Z_{n}

2. $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex τ
3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e.
$f(H(\tau, R)) \subset H(\tau, \alpha R) \forall R>0$

Definition
A point $\tau \in \partial B^{N}$ is called a boundary repelling fixed point if Julia's lemma holds for τ with multiplier $\alpha>1$

Theorem 1.(O —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \tau$
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex τ
3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \forall R>0$

Definition
A point $\tau \in \partial \mathbb{B}^{N}$ is called a boundary repelling fixed point if Julia's lemma holds for τ with multiplier $\alpha>1$

Theorem 1.(O —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \tau$
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex τ

\square

Theorem 1.(0 —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } \tau$
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex τ
3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \forall R>0$

Definition
A point $\tau \in \partial \mathbb{B}^{N}$ is called a boundary repelling fixed point if Julia's lemma holds for τ with multiplier $\alpha>1$

Theorem 1.(0 —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } \tau$
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex τ
3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \forall R>0$

Definition

A point $\tau \in \partial \mathbb{B}^{N}$ is called a boundary repelling fixed point if Julia's lemma holds for τ with multiplier $\alpha>1$.

Idea of the proof in hyperbolic case:

$$
t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2} \sim c^{n}(\text { by Julia's lemma })
$$

$\left\|p r\left(Z_{n}\right)-\operatorname{pr}\left(Z_{n+1}\right)\right\| \leq C \sqrt{t_{n}} \sim c^{n / 2}$

Idea of the proof in hyperbolic case:

$t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2} \sim c^{n}$ (by Julia's lemma)
$\left|\operatorname{pr}\left(Z_{n}\right)-\operatorname{pr}\left(Z_{n+1}\right)\right| \mid \leq C \sqrt{t_{n}} \sim c^{n / 2}$

Idea of the proof in hyperbolic case:

$t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2} \sim c^{n}$ (by Julia's lemma)
$\left\|p r\left(Z_{n}\right)-\operatorname{pr}\left(Z_{n+1}\right)\right\| \leq C \sqrt{t_{n}} \sim c^{n / 2}$

In elliptic case we need the following

Lemma

Let f be a self-map of the unit ball \mathbb{B}^{N} fixing zero, not unitary on any slice. Fix $r_{0}>0$, define $M(r):=\max \left\|f\left(r \mathbb{B}^{N}\right)\right\|, r \in\left[r_{0}, 1\right)$. Then there exists $c<1$ such that

$$
\frac{1-r}{1-M(r)} \leq c \quad \forall r \in\left[r_{0}, 1\right)
$$

In elliptic case we need the following

Lemma

Let f be a self-map of the unit ball \mathbb{B}^{N} fixing zero, not unitary on any slice. Fix $r_{0}>0$, define $M(r):=\max \left\|f\left(r \mathbb{B}^{N}\right)\right\|, r \in\left[r_{0}, 1\right)$. Then there exists $c<1$ such that

$$
\frac{1-r}{1-M(r)} \leq c \quad \forall r \in\left[r_{0}, 1\right)
$$

A BRFP with multiplier α is called isolated if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following
Charactarization of DPED in terms of hackward-iteration
sequences:
Every backward-iteration sequence with bounded hyperbolic step
converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated, so the above characterization is "if and only if".

A BRFP with multiplier α is called isolated if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated, so the above characterization is "if and only if"

A BRFP with multiplier α is called isolated if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated, so the above characterization is "if and only if".

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (0 -, 2010):
 $f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z, w)=\left(2 z+w^{2}, w\right)$, hyperbolic with multiplier 1/2 at the Denjoy-Wolff point

Set of BRFP's: $\left\{\left(r^{2}, i r\right) \mid r \in \mathbb{R}\right\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (0 —, 2010):

$f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z, w)=\left(2 z+w^{2}, w\right)$, hyperbolic with multiplier $1 / 2$ at the Denjoy-Wolff point ∞

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. ($0-$, 2010):

$f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z, w)=\left(2 z+w^{2}, w\right)$, hyperbolic with multiplier $1 / 2$ at the Denjoy-Wolff point ∞

Set of BRFP's: $\left\{\left(r^{2}, i r\right) \mid r \in \mathbb{R}\right\}$

Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a stable set at q.

```
The stable set at each BRFP (r,ir}\mp@subsup{}{}{2})\mathrm{ in the Example 1 is
{(z,r)|Rez>r r}

\section*{Definition}

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a stable set at \(q\).

The stable set at each BRFP \(\left(r, i r^{2}\right)\) in the Example 1 is \(\left\{(z, r) \mid \operatorname{Re} z>r^{2}\right\}\) and has dimension 1.

Conjecture
BRFPS in आH \(N\) with stable set of dimension \(N\) are isolated.
(The conjecture is true for \(N=1\) since all BRFPs are isolated in
1-dimensional case).

\section*{Definition}

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a stable set at \(q\).

The stable set at each BRFP \(\left(r, i r^{2}\right)\) in the Example 1 is \(\left\{(z, r) \mid \operatorname{Re} z>r^{2}\right\}\) and has dimension 1.

\section*{Conjecture}

BRFPs in \(\mathbb{H}^{N}\) with stable set of dimension \(N\) are isolated.
(The conjecture is true for \(N=1\) since all BRFPs are isolated in 1 -dimensional case).

\section*{Conjugations}

\section*{Theorem 2. (O -, 2009) (N-dimensional case, backward iteration)}

Suppose \(f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}\) is an analytic function and 0 is an isolated boundary repelling fixed point for \(f\) with multiplier \(1<\alpha<\infty\). Then \(f\) is conjugated to the automorphism \(\eta(z, w)=(\alpha z, \sqrt{\alpha} w)\)
\[
\psi \circ \eta(Z)=f \circ \psi(Z),
\]
via an analytic intertwining map \(\psi\).
Construction of \(\psi: \quad \psi=\lim _{n \rightarrow \infty}\left\{f_{n} \circ \tau_{n} \circ p_{1}\right\}\)
where \(p_{1}(z, w):=(z, 0)\) is the projection on the first (radial) dimension, so
\[
\psi(z, w)=\psi(z, 0)
\]
and is essentially one-dimensional map.

\section*{Conjugations}

\section*{Theorem 2. (O -, 2009) (N-dimensional case, backward iteration)}

Suppose \(f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}\) is an analytic function and 0 is an isolated boundary repelling fixed point for \(f\) with multiplier \(1<\alpha<\infty\). Then \(f\) is conjugated to the automorphism \(\eta(z, w)=(\alpha z, \sqrt{\alpha} w)\)
\[
\psi \circ \eta(Z)=f \circ \psi(Z),
\]
via an analytic intertwining map \(\psi\).
Construction of \(\psi\) :
\[
\psi=\lim _{n \rightarrow \infty}\left\{f_{n} \circ \tau_{n} \circ p_{1}\right\}
\]
where \(p_{1}(z, w):=(z, 0)\) is the projection on the first (radial) dimension, so
\(\psi(z, w)=\psi(z, 0)\)
and is essentially one-dimensional map.

\section*{Conjugations}

\section*{Theorem 2. (O -, 2009) (N-dimensional case, backward iteration)}

Suppose \(f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}\) is an analytic function and 0 is an isolated boundary repelling fixed point for \(f\) with multiplier \(1<\alpha<\infty\). Then \(f\) is conjugated to the automorphism \(\eta(z, w)=(\alpha z, \sqrt{\alpha} w)\)
\[
\psi \circ \eta(Z)=f \circ \psi(Z),
\]
via an analytic intertwining map \(\psi\).
Construction of \(\psi\) :
\[
\psi=\lim _{n \rightarrow \infty}\left\{f_{n} \circ \tau_{n} \circ p_{1}\right\}
\]
where \(p_{1}(z, w):=(z, 0)\) is the projection on the first (radial) dimension, so
\[
\psi(z, w)=\psi(z, 0)
\]
and is essentially one-dimensional map.

The image of \(\psi\) in \(\mathbb{H}^{N}\) :


\section*{Theorem 3. (O —, 2009)}

Under some regularity condition, it is possible to improve \(\psi\) such that
\[
\psi(z, w)=\psi\left(p_{L}(z, w)\right)
\]
where \(p_{L}\) is a projection on the first \(L\) dimensions.

\section*{Condition is}
\[
f(z, w)=\left(\alpha z+o(|z|), A w+o\left(|z|^{1 / 2}\right)\right)
\]

\section*{Theorem 3. (O -, 2009)}

Under some regularity condition, it is possible to improve \(\psi\) such that
\[
\psi(z, w)=\psi\left(p_{L}(z, w)\right)
\]
where \(p_{L}\) is a projection on the first \(L\) dimensions.

Condition is
\[
f(z, w)=\left(\alpha z+o(|z|), A w+o\left(|z|^{1 / 2}\right)\right)
\]
e.g. \(\boldsymbol{A}=\operatorname{Diag}\left(\sqrt{\alpha}, \ldots \sqrt{\alpha}, \beta_{1}, \ldots \beta_{N-L}\right)\), where \(\beta_{j}<\sqrt{\alpha}\)

\section*{Parabolic case in the disk}

Since \(d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)\), pseudo-hyperbolic step \(d_{n}:=d\left(z_{n}, z_{n+1}\right)\) must have limit: \(d_{n} \xrightarrow[n \rightarrow \infty]{ } b\)

Subcases (do not depend on the choice of sequence):
\(b>0\) parabolic non-zero step type
\(b=0\) parabolic zero-step type

\section*{Parabolic case in the disk}

Since \(d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)\), pseudo-hyperbolic step \(d_{n}:=d\left(z_{n}, z_{n+1}\right)\) must have limit: \(d_{n} \xrightarrow[n \rightarrow \infty]{ } b\)

Subcases (do not depend on the choice of sequence):
\(b>0\) parabolic non-zero step type
\(b=0\) parabolic zero-step type

\section*{Parabolic case in the disk}

Since \(d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)\), pseudo-hyperbolic step \(d_{n}:=d\left(z_{n}, z_{n+1}\right)\) must have limit: \(d_{n} \xrightarrow[n \rightarrow \infty]{ } b\)

Subcases (do not depend on the choice of sequence):
\(b>0\) parabolic non-zero step type
\(b=0\) parabolic zero-step type

\section*{Parabolic case in the disk}

Since \(d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)\), pseudo-hyperbolic step \(d_{n}:=d\left(z_{n}, z_{n+1}\right)\) must have limit: \(d_{n} \xrightarrow[n \rightarrow \infty]{ } b\)

Subcases (do not depend on the choice of sequence):
\(b>0\) parabolic non-zero step type
\(b=0\) parabolic zero-step type

\section*{non-zero step}

tangentially

\section*{Parabolic case in the disk}

Since \(d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)\), pseudo-hyperbolic step \(d_{n}:=d\left(z_{n}, z_{n+1}\right)\) must have limit: \(d_{n} \xrightarrow[n \rightarrow \infty]{ } b\)

Subcases (do not depend on the choice of sequence):
\(b>0\) parabolic non-zero step type
\(b=0\) parabolic zero-step type

tangentially


\section*{Parabolic case in the disk}

Since \(d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)\), pseudo-hyperbolic step \(d_{n}:=d\left(z_{n}, z_{n+1}\right)\) must have limit: \(d_{n} \xrightarrow[n \rightarrow \infty]{ } b\)

Subcases (do not depend on the choice of sequence):
\(b>0\) parabolic non-zero step type
\(b=0\) parabolic zero-step type

tangentially
zero step

radially

other: not known

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.
```

Claim
If the sec|uence of forward iterates {\mp@subsup{Z}{n}{}\mp@subsup{}}{n=1}{\infty}\mathrm{ for parabolic self-map of}
the unit ball is restricted, then it must have zero step, i.e.
d}\mp@subsup{\mathbb{B}}{}{N}(\mp@subsup{Z}{n}{},\mp@subsup{Z}{n+1}{})->0. In particular, non-zero-step sequence canno
converge non-tangentially.

```
The only known parabolic examples in \(\mathbb{H}^{N}\) are:
- A.tomorphisms (translations):
\((z, w) \longmapsto\left(z+z_{0}+2\left\langle w, w_{0}\right\rangle, w+w_{0}\right)\) for some \(\left(z_{0}, w_{0}\right) \in \partial \mathbb{H}^{N}\).

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

\section*{Claim}

If the sequence of forward iterates \(\left\{Z_{n}\right\}_{n=1}^{\infty}\) for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. \(d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \rightarrow 0\). In particular, non-zero-step sequence cannot converge non-tangentially.


Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

\section*{Claim}

If the sequence of forward iterates \(\left\{Z_{n}\right\}_{n=1}^{\infty}\) for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. \(d_{\mathbb{B} N}\left(Z_{n}, Z_{n+1}\right) \rightarrow 0\). In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \(\mathbb{H}^{N}\) are:
- Automorphisms (translations):
\((z, w) \longmapsto\left(z+z_{0}+2\left\langle w, w_{0}\right\rangle, w+w_{0}\right)\) for some \(\left(z_{0}, w_{0}\right) \in \partial \mathbb{H}^{N}\).
and
- Example 2. (O —, 2010):

Given one-dimensional \(\phi: \mathbb{H} \rightarrow \mathbb{H}\) of hyperbolic or parabolic type, with the Denjoy-Wolff point \(\infty\) and BRFP iy,
- Example 2. (O —, 2010):

Given one-dimensional \(\phi: \mathbb{H} \rightarrow \mathbb{H}\) of hyperbolic or parabolic type, with the Denjoy-Wolff point \(\infty\) and BRFP iyo, construct \(f(z, w):=\left(\phi\left(z-w^{2}\right)+w^{2}, w\right)\). Then:
\(f\) is the self-map of \(\mathbb{H}^{2}\) with the Denjoy-Wolff point \(\infty\) and has the
same type and same multiplier at \(\infty\) as \(\phi\). \(f\) has a 1-dimensional real submanifold \(\left\{\left(i y_{0}+t^{2}, t\right) \mid t \in \mathbb{R}\right\}\) of BRFPs.

\section*{- Example 2. (O —, 2010):}

Given one-dimensional \(\phi: \mathbb{H} \rightarrow \mathbb{H}\) of hyperbolic or parabolic type, with the Denjoy-Wolff point \(\infty\) and BRFP iy, construct \(f(z, w):=\left(\phi\left(z-w^{2}\right)+w^{2}, w\right)\). Then: \(f\) is the self-map of \(\mathbb{H}^{2}\) with the Denjoy-Wolff point \(\infty\) and has the same type and same multiplier at \(\infty\) as \(\phi\).
\(\square\)

\section*{- Example 2. (O —, 2010):}

Given one-dimensional \(\phi: \mathbb{H} \rightarrow \mathbb{H}\) of hyperbolic or parabolic type, with the Denjoy-Wolff point \(\infty\) and BRFP iy, construct \(f(z, w):=\left(\phi\left(z-w^{2}\right)+w^{2}, w\right)\). Then: \(f\) is the self-map of \(\mathbb{H}^{2}\) with the Denjoy-Wolff point \(\infty\) and has the same type and same multiplier at \(\infty\) as \(\phi\). \(f\) has a 1-dimensional real submanifold \(\left\{\left(i y_{0}+t^{2}, t\right) \mid t \in \mathbb{R}\right\}\) of BRFPs.

\section*{and}
- Example 2. (O -, 2010):

Given one-dimensional \(\phi: \mathbb{H} \rightarrow \mathbb{H}\) of hyperbolic or parabolic type, with the Denjoy-Wolff point \(\infty\) and BRFP iy, construct \(f(z, w):=\left(\phi\left(z-w^{2}\right)+w^{2}, w\right)\). Then: \(f\) is the self-map of \(\mathbb{H}^{2}\) with the Denjoy-Wolff point \(\infty\) and has the same type and same multiplier at \(\infty\) as \(\phi\). \(f\) has a 1-dimensional real submanifold \(\left\{\left(i y_{0}+t^{2}, t\right) \mid t \in \mathbb{R}\right\}\) of BRFPs.


\section*{Future goals}
- Dimension of stable set at the BRFP q

\section*{- Conjugation for non-isolated fixed points}

\section*{Future goals}
- Dimension of stable set at the BRFP q
- Conjugation for non-isolated fixed points

\section*{Future goals}
- Dimension of stable set at the BRFP \(q\)
- Conjugation for non-isolated fixed points
- Parabolic case```

