Backward iteration in the unit ball

Olena Ostapyuk

Department of Mathematics Kansas State University

Analysis/PDE Seminar Texas A&M University

- One-dimensional case
 - Forward iteration
 - Backward iteration
- Multi-dimensional case
 - Preliminaries
 - Main result and examples
- Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball
- Parabolic case
- 5 Future goals

- One-dimensional case
 - Forward iteration
 - Backward iteration
- Multi-dimensional case
 - Preliminaries
 - Main result and examples
- Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball
- Parabolic case
- 5 Future goals

- One-dimensional case
 - Forward iteration
 - Backward iteration
- Multi-dimensional case
 - Preliminaries
 - Main result and examples
- Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball
- Parabolic case
- 5 Future goals

- One-dimensional case
 - Forward iteration
 - Backward iteration
- Multi-dimensional case
 - Preliminaries
 - Main result and examples
- Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball
- Parabolic case
- 5 Future goals

- One-dimensional case
 - Forward iteration
 - Backward iteration
- Multi-dimensional case
 - Preliminaries
 - Main result and examples
- Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball
- Parabolic case
- 5 Future goals

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if $p \in \mathbb{D}$, then f(p) = p and |f'(p)| < 1 if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$

n-th iterate of
$$f$$
 $f_n = \underbrace{f \circ \ldots \circ f}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if
$$p \in \mathbb{D}$$
, then $f(p) = p$ and $|f'(p)| < 1$ if $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Let
$$f$$
 be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$
n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if
$$p \in \mathbb{D}$$
, then $f(p) = p$ and $|f'(p)| < 1$
if $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Let
$$f$$
 be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$
n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}$

By **Schwarz's lemma**, f is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if $p \in \mathbb{D}$, then f(p) = p and |f'(p)| < 1 if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$ n-th iterate of f $f_n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$

By **Schwarz's lemma**, *f* is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if
$$p \in \mathbb{D}$$
, then $f(p) = p$ and $|f'(p)| < 1$
if $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \le 1$ in the sense of non-tangential limits

Cases:

 $1.p \in \mathbb{D}$ f is called elliptic

$$2.p \in \partial \mathbb{D}$$
, $f'(p) < 1$ hyperbolic

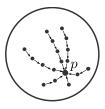
$$3.p \in \partial \mathbb{D}$$
, $f'(p) = 1$ parabolic

Cases:

1.p ∈ \mathbb{D} f is called elliptic

 $2.p \in \partial \mathbb{D}$, f'(p) < 1 hyperbolic

 $3.p \in \partial \mathbb{D}, f'(p) = 1$ parabolic



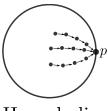
Elliptic

Cases:

1.p ∈ \mathbb{D} f is called elliptic

$$2.p \in \partial \mathbb{D}$$
, $f'(p) < 1$ hyperbolic

 $3.p \in \partial \mathbb{D}$, f'(p) = 1 parabolic



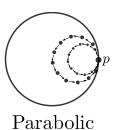
Hyperbolic

Cases:

1.p ∈ \mathbb{D} f is called elliptic

$$2.p \in \partial \mathbb{D}$$
, $f'(p) < 1$ hyperbolic

$$3.p \in \partial \mathbb{D}$$
, $f'(p) = 1$ parabolic

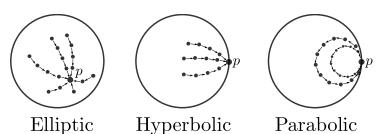


Cases:

1.p ∈ \mathbb{D} f is called elliptic

$$2.p \in \partial \mathbb{D}$$
, $f'(p) < 1$ hyperbolic

 $3.p \in \partial \mathbb{D}$, f'(p) = 1 parabolic



If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point p, and multiplier $c = f'(p) \le 1$:

$$\forall R > 0 \quad f(H(p,R)) \subseteq H(p,cR),$$

where H(p,R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

$$H(p,R) := \left\{ z \in \mathbb{D} : \frac{|p-z|^2}{1-|z|^2} < R \right\}$$

If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point p, and multiplier $c = f'(p) \le 1$:

$$\forall R > 0 \quad f(H(p,R)) \subseteq H(p,cR),$$

where H(p,R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

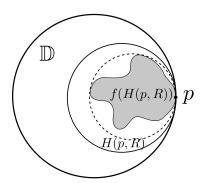
$$H(p,R):=\left\{z\in\mathbb{D}:\frac{|p-z|^2}{1-|z|^2}< R\right\}$$

If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point p, and multiplier $c = f'(p) \le 1$:

$$\forall R > 0 \quad f(H(p,R)) \subseteq H(p,cR),$$

where H(p,R) is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

$$H(p,R):=\left\{z\in\mathbb{D}: \frac{|p-z|^2}{1-|z|^2}< R\right\}$$



Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

Not always exists: f(z) = cz, |c| < 1 has no backward iteration sequences.

By Schwarz's lemma,
$$d(z_{n+1}, z_n) \ge d(z_n, z_{n-1}) \ \forall n$$
, so $d_n := d(z_{n+1}, z_n) \nearrow$.

We need additional condition on sequence to converge:

$$d(z_{n+1},z_n)\leq a<1 \quad \forall n$$

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

Not always exists: f(z) = cz, |c| < 1 has no backward iteration sequences.

By Schwarz's lemma,
$$d(z_{n+1}, z_n) \ge d(z_n, z_{n-1}) \ \forall n$$
, so $d_n := d(z_{n+1}, z_n) \nearrow$.

We need additional condition on sequence to converge:

$$d(z_{n+1},z_n)\leq a<1 \quad \forall n$$

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

Not always exists: f(z) = cz, |c| < 1 has no backward iteration sequences.

By Schwarz's lemma,
$$d(z_{n+1}, z_n) \ge d(z_n, z_{n-1}) \ \forall n$$
, so $d_n := d(z_{n+1}, z_n) \nearrow$.

We need additional condition on sequence to converge:

$$d(z_{n+1},z_n) \leq a < 1 \quad \forall n$$

Backward-iteration sequence: $\{z_n\}_{n=0}^{\infty}$, $f(z_{n+1}) = z_n$

Not always exists: f(z) = cz, |c| < 1 has no backward iteration sequences.

By Schwarz's lemma,
$$d(z_{n+1}, z_n) \ge d(z_n, z_{n-1}) \ \forall n$$
, so $d_n := d(z_{n+1}, z_n) \nearrow$.

We need additional condition on sequence to converge:

$$d(z_{n+1},z_n) \leq a < 1 \quad \forall n$$

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

• The sequence converges to the point on the boundary $q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined derivative $f'(q) < \infty$

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

- The sequence converges to the point on the boundary $q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined derivative $f'(q) < \infty$
- If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. f'(q) > 1). The convergence $z_n \rightarrow q$ is non-tangential.

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \le a < 1$. Then:

- The sequence converges to the point on the boundary $q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined derivative $f'(q) < \infty$
- If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. f'(q) > 1). The convergence $z_n \rightarrow q$ is non-tangential.
- If q = p, then $z_n \to q$ tangentially. It may happen only in parabolic case.

Multi-dimensional case

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, \ \|Z\|^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : ||Z|| < 1\}$

Julia's lemma in \mathbb{R}^N

Let f be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that $\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$ Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X,R)) \subset H(Y,\alpha R)$.

Multi-dimensional case

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, \ \|Z\|^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : \|Z\| < 1\}$

Julia's lemma in \mathbb{B}^N

Let f be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that $\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$ Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X,R)) \subset H(Y,\alpha R)$.

Multi-dimensional case

$$\mathbb{C}^N$$
, inner product $(Z, W) = \sum_{j=1}^N Z_j \overline{W_j}, \ \|Z\|^2 = (Z, Z)$

Unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : \|Z\| < 1\}$

Julia's lemma in \mathbb{R}^N

Let f be a holomorphic self-map of \mathbb{B}^N and $X \in \partial \mathbb{B}^N$ such that $\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$ Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0$ $f(H(X,R)) \subset H(Y,\alpha R)$. **Horosphere** of center $X \in \partial \mathbb{B}^N$ and radius R > 0:

$$H(X,R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z,X)|^2}{1 - \|Z\|^2} < R \right\}$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of f at p.

f is called hyperbolic if c < 1 and parabolic if c = 1.

We will call f **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $||f(Z)|| < ||Z|| \; \forall Z \in \mathbb{B}^N \setminus \{0\}$).

Horosphere of center $X \in \partial \mathbb{B}^N$ and radius R > 0:

$$H(X,R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z,X)|^2}{1 - \|Z\|^2} < R \right\}$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0,1]$ is a multiplier of f at p.

f is called hyperbolic if c < 1 and parabolic if c = 1.

We will call f **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $||f(Z)|| < ||Z|| \; \forall Z \in \mathbb{B}^N \setminus \{0\}$).

Horosphere of center $X \in \partial \mathbb{B}^N$ and radius R > 0:

$$H(X,R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z,X)|^2}{1 - \|Z\|^2} < R \right\}$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0,1]$ is a multiplier of f at p.

f is called hyperbolic if c < 1 and parabolic if c = 1.

We will call f **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $||f(Z)|| < ||Z|| \; \forall Z \in \mathbb{B}^N \setminus \{0\}$).

Siegel domain: $\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^2\}$

is biholomorphically equivalent to the unit ball \mathbb{B}^N via Cayley transform: $\mathcal{C}: \mathbb{B}^N \to \mathbb{H}^N$

$$C((z, w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad C^{-1}((z, w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$$

Siegel domain: $\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^2\}$

is biholomorphically equivalent to the unit ball \mathbb{B}^N via **Cayley**

transform: $C: \mathbb{B}^N \to \mathbb{H}^N$

$$\mathcal{C}((z,w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad \mathcal{C}^{-1}((z,w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$$

Siegel domain: $\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^2\}$

is biholomorphically equivalent to the unit ball $\mathbb{B}^{\textit{N}}$ via Cayley

transform: $\mathcal{C}: \mathbb{B}^N \to \mathbb{H}^N$

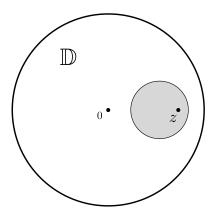
$$\mathcal{C}((z,w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad \mathcal{C}^{-1}((z,w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$$



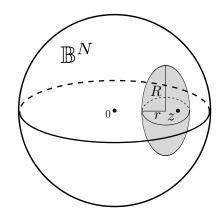
Horosphere at Denjoy-Wolff point ∞ and its image in \mathbb{H}^N

Crucial difference between $\mathbb D$ and $\mathbb B^N$: all results and estimates are weaker in orthogonal dimensions.

Crucial difference between $\mathbb D$ and $\mathbb B^N$: all results and estimates are weaker in orthogonal dimensions.



Pseudo-hyperbolic disk is a Euclidean disk



Pseudohyperbolic ball is a Euclidean ellipsoid with R>r and $\frac{R}{r}\to\infty$ as $z\to\partial\mathbb{B}^N$

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{R}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

• There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_n \xrightarrow[n \to \infty]{} q$.

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_n \xrightarrow[n \to \infty]{} q$.
- $\{Z_n\}$ stays in a Koranyi region with vertex q (Koranyi regions are weaker analogs of non-tangential regions in higher dimension).

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_n \xrightarrow[n \to \infty]{} q$.
- $\{Z_n\}$ stays in a Koranyi region with vertex q (Koranyi regions are weaker analogs of non-tangential regions in higher dimension).
- **3** Julia's lemma holds for q with multiplier $\alpha \ge \frac{1}{c} > 1$, i.e. $f(H(q,R)) \subset H(q,\alpha R) \ \forall R > 0$.

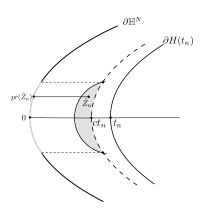
Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_n \xrightarrow[n \to \infty]{} q$.
- $\{Z_n\}$ stays in a Koranyi region with vertex q (Koranyi regions are weaker analogs of non-tangential regions in higher dimension).
- 3 Julia's lemma holds for q with multiplier $\alpha \geq \frac{1}{c} > 1$, i.e. $f(H(q,R)) \subset H(q,\alpha R) \ \forall R > 0$.

Definition

A point $q \in \partial \mathbb{B}^N$ is called a boundary repelling fixed point if Julia's lemma holds for q with multiplier $\alpha > 1$.

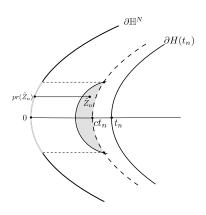
Idea of the proof in hyperbolic case:



$$t_n := \operatorname{Re} z_n - \|w_n\|^2 \sim c^n$$
 (by Julia's lemma)

$$||pr(Z_n) - pr(Z_{n+1})|| \le C\sqrt{t_n} \sim c^{n/2}$$

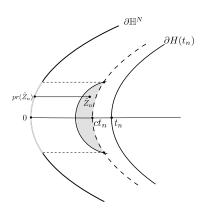
Idea of the proof in hyperbolic case:



 $t_n := \operatorname{Re} z_n - \|w_n\|^2 \sim c^n$ (by Julia's lemma)

$$\|pr(Z_n) - pr(Z_{n+1})\| \le C\sqrt{t_n} \sim c^{n/2}$$

Idea of the proof in hyperbolic case:



$$t_n := \operatorname{Re} z_n - \|w_n\|^2 \sim c^n$$
 (by Julia's lemma)

$$\|pr(Z_n) - pr(Z_{n+1})\| \le C\sqrt{t_n} \sim c^{n/2}$$

In elliptic case we need the following

Lemma

Let f be a self-map of the unit ball \mathbb{B}^N fixing zero, not unitary on any slice. Fix $r_0 > 0$, define $M(r) := \max \|f(r\mathbb{B}^N)\|$, $r \in [r_0, 1)$. Then there exists c < 1 such that

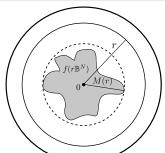
$$\frac{1-r}{1-M(r)} \leq c \quad \forall r \in [r_0,1)$$

In elliptic case we need the following

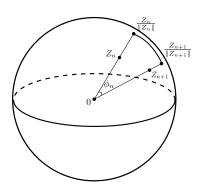
Lemma

Let f be a self-map of the unit ball \mathbb{B}^N fixing zero, not unitary on any slice. Fix $r_0 > 0$, define $M(r) := \max \|f(r\mathbb{B}^N)\|$, $r \in [r_0, 1)$. Then there exists c < 1 such that

$$\frac{1-r}{1-M(r)} \leq c \quad \forall r \in [r_0,1)$$



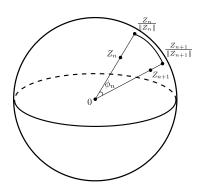
Idea of the proof in elliptic case:



$$t_n := 1 - \|Z_n\| \sim c^n$$
 (by lemma)

$$\phi_n := \operatorname{arc-length}(rac{Z_n}{\|Z_n\|}, rac{Z_{n+1}}{\|Z_{n+1}\|}) \sim \sqrt{t_n} \sim c^{n/2}$$

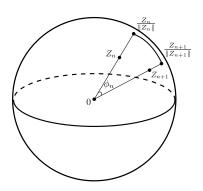
Idea of the proof in elliptic case:



$$t_n := 1 - \|Z_n\| \sim c^n$$
 (by lemma)

$$\phi_n := \operatorname{arc-length}(rac{Z_n}{\|Z_n\|},rac{Z_{n+1}}{\|Z_{n+1}\|}) \sim \sqrt{t_n} \sim c^{n/2}$$

Idea of the proof in elliptic case:



$$t_n := 1 - \|Z_n\| \sim c^n$$
 (by lemma)

$$\phi_n := \operatorname{arc-length}(rac{Z_n}{\|Z_n\|},rac{Z_{n+1}}{\|Z_{n+1}\|}) \sim \sqrt{t_n} \sim c^{n/2}$$

A BRFP with multiplier α is called **isolated** if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated (corollary of the theorem of Cowen and Pommerenke, 1982), so the above characterization is "if and only if".

A BRFP with multiplier α is called **isolated** if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated (corollary of the theorem of Cowen and Pommerenke, 1982), so the above characterization is "if and only if".

A BRFP with multiplier α is called **isolated** if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated (corollary of the theorem of Cowen and Pommerenke, 1982), so the above characterization is "if and only if".

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (O —, 2010):

 $f: \mathbb{H}^2 \to \mathbb{H}^2$, $f(z,w)=(2z+w^2,w)$, hyperbolic with multiplier 1/2 at the Denjoy-Wolff point ∞

Iterates:
$$f_n(z, w) = (2^n z + (2^n - 1)w^2, w)$$

Set of BRFP's: $\{(r^2, ir) | r \in \mathbb{R}\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (O —, 2010):

 $f: \mathbb{H}^2 \to \mathbb{H}^2$, $f(z,w)=(2z+w^2,w)$, hyperbolic with multiplier 1/2 at the Denjoy-Wolff point ∞

```
Iterates: f_n(z, w) = (2^n z + (2^n - 1)w^2, w)
Set of BRFP's: \{(r^2, ir) | r \in \mathbb{R}\}
```

Problem:

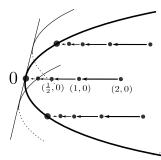
Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (O —, 2010):

 $f:\mathbb{H}^2 \to \mathbb{H}^2$, $f(z,w)=(2z+w^2,w)$, hyperbolic with multiplier 1/2 at the Denjoy-Wolff point ∞

Iterates: $f_n(z, w) = (2^n z + (2^n - 1)w^2, w)$

Set of BRFP's: $\{(r^2, ir) | r \in \mathbb{R} \}$



Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a **stable set** at q.

The stable set at each BRFP (r, ir^2) in the Example 1 is $\{(z, r) | \text{Re } z > r^2 \}$ and has dimension 1.

Conjecture

BRFPs in \mathbb{H}^N with stable set of dimension N are isolated.

(The conjecture is true for N = 1 since all BRFPs are isolated in 1-dimensional case).

Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a **stable set** at q.

The stable set at each BRFP (r, ir^2) in the Example 1 is $\{(z, r) | \text{Re } z > r^2\}$ and has dimension 1.

Conjecture

BRFPs in \mathbb{H}^N with stable set of dimension N are isolated.

(The conjecture is true for N = 1 since all BRFPs are isolated in 1-dimensional case).

Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a stable set at q.

The stable set at each BRFP (r, ir^2) in the Example 1 is $\{(z, r) | \text{Re } z > r^2 \}$ and has dimension 1.

Conjecture

BRFPs in \mathbb{H}^N with stable set of dimension N are isolated.

(The conjecture is true for N = 1 since all BRFPs are isolated in 1-dimensional case).

(Semi) conjugations

Goal:

For self-map f of \mathbb{D} (or \mathbb{B}^N), solve an equation

$$\psi \circ f = \eta_f \circ \psi,$$

where $\psi: \mathbb{D} \to \Omega$ (resp. $\psi: \mathbb{B}^N \to \Omega$) is unknown holomorphic function to a complex manifold Ω , and η_f is a simple map (e.g. biholomorphism) of Ω .

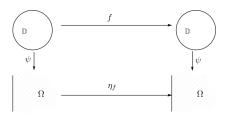
(Semi) conjugations

Goal:

For self-map f of \mathbb{D} (or \mathbb{B}^N), solve an equation

$$\psi \circ f = \eta_f \circ \psi,$$

where $\psi: \mathbb{D} \to \Omega$ (resp. $\psi: \mathbb{B}^N \to \Omega$) is unknown holomorphic function to a complex manifold Ω , and η_f is a simple map (e.g. biholomorphism) of Ω .



Koenigs, 1884

If f is elliptic with $f'(p) \neq 0$, then

$$\psi \circ f = f'(p) \cdot \psi$$

with $\psi: \mathbb{D} \to \mathbb{C}$.

Koenigs, 1884

If f is elliptic with $f'(p) \neq 0$, then

$$\psi \circ \mathit{f} = \mathit{f}'(\mathit{p}) \cdot \psi$$

with $\psi: \mathbb{D} \to \mathbb{C}$.

Böttcher, 1904

If f is elliptic with f'(p) = 0, then

$$\psi \circ \mathbf{f} = \psi^{\mathbf{n}}$$

with ψ defined in a neighborhood of p.

Koenigs, 1884

If f is elliptic with $f'(p) \neq 0$, then

$$\psi \circ f = f'(p) \cdot \psi$$

with $\psi: \mathbb{D} \to \mathbb{C}$.

Böttcher, 1904

If f is elliptic with f'(p) = 0, then

$$\psi \circ f = \psi^n$$

with ψ defined in a neighborhood of p.

Valiron, 1913

If f is hyperbolic with f'(p) = c, then

$$\psi \circ f = \frac{1}{c} \cdot \psi$$

with $\psi: \mathbb{D} \to \mathbb{H}$.

Pommerenke, Baker and Pommerenke, 1979

If f is parabolic, then

$$\psi \circ f = \psi + 1$$

with $\psi : \mathbb{D} \to \mathbb{H}$ (non-zero step case) or $\psi : \mathbb{D} \to \mathbb{C}$ (zero step case).

Pommerenke, Baker and Pommerenke, 1979

If f is parabolic, then

$$\psi \circ f = \psi + 1$$

with $\psi: \mathbb{D} \to \mathbb{H}$ (non-zero step case) or $\psi: \mathbb{D} \to \mathbb{C}$ (zero step case).

Poggi-Corradini, 2000 (backward iteration):

An analytic self-map of the unit disc \mathbb{D} f with BRFP $1 \in \partial \mathbb{D}$ and multiplier α at 1 can be conjugated to the automorphism $\eta(z) = (z-a)/(1-az)$, where $a = (\alpha-1)/(\alpha+1)$:

$$\psi \circ \eta(z) = f \circ \psi(z),$$

via an analytic map ψ of $\mathbb D$ with $\psi(\mathbb D)\subseteq \mathbb D$, which has non-tangential limit 1 at 1.

Conjugations in several dimensions

Bracci, Gentili, Poggi-Corradini, 2010; hyperbolic case

Let $f: \mathbb{B}^N \to \mathbb{B}^N$ be a hyperbolic analytic self-map with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$ and multiplier c < 1. If

- **①** There exists special sequence $f_n(Z_0) \rightarrow p$ and
- 2 the $K \lim_{Z \to p} \frac{1 \langle f(Z), p \rangle}{1 \langle Z, p \rangle}$ exists,

then there is a non-constant analytic function $\psi: \mathbb{B}^N \to \mathbb{H}$ such that

$$\psi \circ f = \frac{1}{c} \cdot \psi$$

Theorem 2. (O —, 2009) (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z,w) = (\alpha z, \sqrt{\alpha}w)$

$$\psi \circ \eta(Z) = f \circ \psi(Z),$$

via an analytic intertwining map ψ .

Construction of ψ :

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

$$\psi(\mathsf{z},\mathsf{w}) = \psi(\mathsf{z},\mathsf{0})$$

and is essentially one-dimensional map.

Theorem 2. (O —, 2009) (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z,w) = (\alpha z, \sqrt{\alpha}w)$

$$\psi \circ \eta(Z) = f \circ \psi(Z),$$

via an analytic intertwining map ψ .

Construction of ψ :

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension,

$$\psi(\mathsf{z},\mathsf{w}) = \psi(\mathsf{z},\mathsf{0})$$

and is essentially one-dimensional map.

Theorem 2. (O —, 2009) (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z,w) = (\alpha z, \sqrt{\alpha}w)$

$$\psi \circ \eta(Z) = f \circ \psi(Z),$$

via an analytic intertwining map ψ .

Construction of ψ :

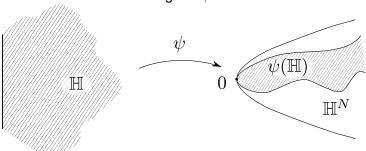
$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

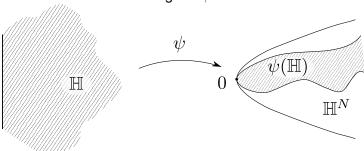
$$\psi(\mathbf{z},\mathbf{w})=\psi(\mathbf{z},\mathbf{0})$$

and is essentially one-dimensional map.

The image of ψ in \mathbb{H}^N :



The image of ψ in \mathbb{H}^N :



Corollary

Since image of ψ is always a subset of stable set, the dimension of stable set is at least 1.

Theorem 3. (O —, 2009)

Under some regularity condition, it is possible to improve ψ such that

$$\psi(\mathbf{z},\mathbf{w})=\psi(\mathbf{p}_{L}(\mathbf{z},\mathbf{w})),$$

where p_L is a projection on the first L dimensions.

Condition is

$$f(z, w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2}))$$

e.g.
$$A = Diag(\sqrt{\alpha}, \dots \sqrt{\alpha}, \beta_1, \dots \beta_{N-L})$$
, where $\beta_j < \sqrt{\alpha}$

Theorem 3. (O —, 2009)

Under some regularity condition, it is possible to improve ψ such that

$$\psi(\mathbf{z},\mathbf{w})=\psi(\mathbf{p}_{L}(\mathbf{z},\mathbf{w})),$$

where p_L is a projection on the first L dimensions.

Condition is

$$f(z, w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2}))$$

e.g.
$$A = Diag(\sqrt{\alpha}, \dots \sqrt{\alpha}, \beta_1, \dots \beta_{N-L})$$
, where $\beta_j < \sqrt{\alpha}$

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b=0 parabolic zero-step type

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b=0 parabolic zero-step type

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

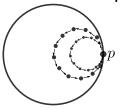
Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

non-zero step



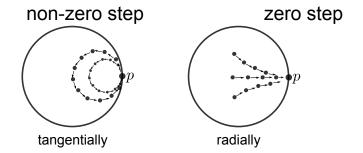
tangentially

Since $d(z_n, z_{n+1}) \le d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

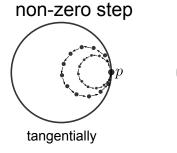


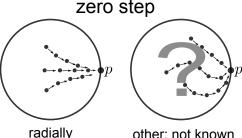
Since $d(z_n,z_{n+1}) \leq d(z_{n-1},z_n)$, pseudo-hyperbolic step $d_n:=d(z_n,z_{n+1})$ must have limit: $d_n \xrightarrow[n \to \infty]{} b$

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type





Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Open question

Is it true that if $d_{\mathbb{B}^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0$ for some $Z_0 \in \mathbb{B}^N$, then $d_{\mathbb{B}^N}(f_n(Z), f_{n+1}(Z)) \to 0$ for all $Z \in \mathbb{B}^N$?

Claim

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \to 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^N are:

• Automorphisms (translations):

 $(z, w) \longmapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$ for some $(z_0, w_0) \in \partial \mathbb{H}^N$.

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Open question

Is it true that if $d_{\mathbb{B}^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0$ for some $Z_0 \in \mathbb{B}^N$, then $d_{\mathbb{B}^N}(f_n(Z), f_{n+1}(Z)) \to 0$ for all $Z \in \mathbb{B}^N$?

Claim

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n,Z_{n+1}) \to 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^N are:

• Automorphisms (translations):

 $(z,w)\longmapsto (z+z_0+2\langle w,w_0\rangle\,,w+w_0)$ for some $(z_0,w_0)\in\partial\mathbb{H}^N$.

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Open question

Is it true that if $d_{\mathbb{B}^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0$ for some $Z_0 \in \mathbb{B}^N$, then $d_{\mathbb{B}^N}(f_n(Z), f_{n+1}(Z)) \to 0$ for all $Z \in \mathbb{B}^N$?

Claim

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n,Z_{n+1}) \to 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^N are:

• Automorphisms (translations):

$$(z,w)\longmapsto (z+z_0+2\langle w,w_0\rangle\,,w+w_0)$$
 for some $(z_0,w_0)\in\partial\mathbb{H}^N.$

11-23-2010

• Example 2. (O —, 2010):

Given one-dimensional $\phi: \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy₀,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then: f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the

f has a 1-dimensional real submanifold $\{(\mathsf{i} \mathsf{y}_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs

• Example 2. (O —, 2010):

Given one-dimensional $\phi: \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy₀,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

f has a 1-dimensional real submanifold $\{(iy_0+t^2,t)|t\in\mathbb{R}\}$ of BRFPs

• Example 2. (O —, 2010):

Given one-dimensional $\phi: \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy₀,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

f has a 1-dimensional real submanifold $\{(\mathsf{i} \mathsf{y}_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs.

• Example 2. (O —, 2010):

Given one-dimensional $\phi: \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy₀,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

f has a 1-dimensional real submanifold $\{(iy_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs.

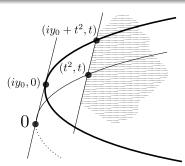
• Example 2. (O —, 2010):

Given one-dimensional $\phi: \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy_0 ,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ .

f has a 1-dimensional real submanifold $\{(iy_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs.



Future goals

• Dimension of stable set at the BRFP q

Conjugation for non-isolated fixed points

Parabolic case

Future goals

• Dimension of stable set at the BRFP q

Conjugation for non-isolated fixed points

Parabolic case

Future goals

• Dimension of stable set at the BRFP q

Conjugation for non-isolated fixed points

Parabolic case

Thank you!

http://arxiv.org/abs/0910.5451