Backward iteration in the unit ball

Olena Ostapyuk

Department of Mathematics
Kansas State University

Analysis/PDE Seminar
Texas A\&M University

Outline of my Talk

(1) One-dimensional case

- Forward iteration
- Backward iteration
(2) Multi-dimensional case
- Preliminaries
- Main result and examples

Conjugations

- Overview
- Conjugations near BRFP in the unit ball
(4) Parabolic case
(5) Future goals

Outline of my Talk

(1) One-dimensional case

- Forward iteration
- Backward iteration
(2) Multi-dimensional case
- Preliminaries
- Main result and examples

4) Parabolic case
(5) Future goals

Outline of my Talk

(1) One-dimensional case

- Forward iteration
- Backward iteration
(2) Multi-dimensional case
- Preliminaries
- Main result and examples
(3) Conjugations
- Overview
- Conjugations near BRFP in the unit ball
(4) Parabolic case
(5) Future goals

Outline of my Talk

(1) One-dimensional case

- Forward iteration
- Backward iteration
(2) Multi-dimensional case
- Preliminaries
- Main result and examples
(3) Conjugations
- Overview
- Conjugations near BRFP in the unit ball

4 Parabolic case
(5) Future goals

Outline of my Talk

(1) One-dimensional case

- Forward iteration
- Backward iteration
(2) Multi-dimensional case
- Preliminaries
- Main result and examples
(3) Conjugations
- Overview
- Conjugations near BRFP in the unit ball

4. Parabolic case
(5) Future goals

One-dimensional case Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$

n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}$
n times
By Schmarz's Iemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{W} z}\right|
$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p.
if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$
if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of
non-tangential limits

One-dimensional case Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$

By Schwarz's Iemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{W} z}\right|
$$

Theorem (Denjoy-Wolff)
If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p.
if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$
if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of
non-tangential limits

One-dimensional case Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}_{n \text { times }}$
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{W} z}\right|
$$

> Theorem (Denjoy-Wolff)
> If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p.
> if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$
> if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of
> non-tangential limits

One-dimensional case Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}_{n \text { times }}$
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{W} z}\right|
$$

> Theorem (Denjoy-Wolff)
> If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$ if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of non-tangential limits

One-dimensional case Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}_{n \text { times }}$
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{W} z}\right|
$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$ if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of non-tangential limits

The point p is called the Denjoy-Wolff point of f.

Cases:

1. $p \in \mathbb{D} f$ is called elliptic

The point p is called the Denjoy-Wolff point of f.
Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
$3 . p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Elliptic

The point p is called the Denjoy-Wolff point of f.

Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
3. $p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Hyperbolic

The point p is called the Denjoy-Wolff point of f.

Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
3. $p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Parabolic

The point p is called the Denjoy-Wolff point of f.

Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
3. $p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Elliptic

Hyperbolic

Parabolic

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R)
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R)
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

$$
H(p, R):=\left\{z \in \mathbb{D}: \frac{|p-z|^{2}}{1-|z|^{2}}<R\right\}
$$

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R),
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

$$
H(p, R):=\left\{z \in \mathbb{D}: \frac{|p-z|^{2}}{1-|z|^{2}}<R\right\}
$$

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$

Not always exists: $f(z)=c z,|c|<1$ has no backward iteration sequences.

By Schwarz's lemma, $d\left(z_{n+1}, z_{n}\right) \geq d\left(z_{n}, z_{n-1}\right) \forall n$, so
$d_{n}:=d\left(z_{n+1}, z_{n}\right)$

We need additional condition on sequence to converge:

(the pseudo-hyperbolic step must be bounded above).

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$

Not always exists: $f(z)=c z,|c|<1$ has no backward iteration sequences.

By Schwarz's lemma, $d\left(z_{n+1}, z_{n}\right) \geq d\left(z_{n}, z_{n-1}\right) \forall n$, so $d_{n}:=d\left(z_{n+1}, z_{n}\right)$

We need additional condition on sequence to converge:

(the pseudo-hyperbolic step must be bounded above).

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$

Not always exists: $f(z)=c z,|c|<1$ has no backward iteration sequences.

By Schwarz's lemma, $d\left(z_{n+1}, z_{n}\right) \geq d\left(z_{n}, z_{n-1}\right) \forall n$, so $d_{n}:=d\left(z_{n+1}, z_{n}\right) \nearrow$.

We need additional condition on sequence to converge:

(the pseudo-hyperbolic step must be bounded above).

Backward iteration

Backward-iteration sequence: $\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$
Not always exists: $f(z)=c z,|c|<1$ has no backward iteration sequences.

By Schwarz's lemma, $d\left(z_{n+1}, z_{n}\right) \geq d\left(z_{n}, z_{n-1}\right) \forall n$, so $d_{n}:=d\left(z_{n+1}, z_{n}\right) \nearrow$.

We need additional condition on sequence to converge:

$$
d\left(z_{n+1}, z_{n}\right) \leq a<1 \quad \forall n
$$

(the pseudo-hyperbolic step must be bounded above).

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

- The sequence converges to the point on the boundary $q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined derivative $f^{\prime}(q)<\infty$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

- The sequence converges to the point on the boundary $q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined derivative $f^{\prime}(q)<\infty$
- If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. $\left.f^{\prime}(q)>1\right)$. The convergence $z_{n} \rightarrow q$ is non-tangential.

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

- The sequence converges to the point on the boundary $q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined derivative $f^{\prime}(q)<\infty$
- If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. $\left.f^{\prime}(q)>1\right)$. The convergence $z_{n} \rightarrow q$ is non-tangential.
- If $q=p$, then $z_{n} \rightarrow q$ tangentially. It may happen only in parabolic case.

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z)$

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z)$

Unit ball $\mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\}$

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z)$

Unit ball $\mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\}$

Julia's lemma in \mathbb{B}^{N}

Let f be a holomorphic self-map of \mathbb{B}^{N} and $X \in \partial \mathbb{B}^{N}$ such that $\liminf _{Z \rightarrow X} \frac{1-\|f(Z)\|}{1-\|Z\|}=\alpha<\infty$
Then there exists a unique $Y \in \partial \mathbb{B}^{N}$ such that $\forall R>0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^{N}$ and radius $R>0$:
$H(X, R)=\left\{Z \in \mathbb{B}^{N}: \frac{|1-(Z, X)|^{2}}{1-\|Z\|^{2}}<R\right\}$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)
If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{-\|(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.

We will call f elliptic if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\mid f(Z)\|<\| Z \| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.

Horosphere of center $X \in \partial \mathbb{B}^{N}$ and radius $R>0$:
$H(X, R)=\left\{Z \in \mathbb{B}^{N}: \frac{|1-(Z, X)|^{2}}{1-\|Z\|^{2}}<R\right\}$
Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.

Horosphere of center $X \in \partial \mathbb{B}^{N}$ and radius $R>0$:
$H(X, R)=\left\{Z \in \mathbb{B}^{N}: \frac{|1-(Z, X)|^{2}}{1-\|Z\|^{2}}<R\right\}$
Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.

We will call f elliptic if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\|f(Z)\|<\|Z\| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.

Siegel domain: $\mathbb{H}^{N}=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1}: R e z>\|w\|^{2}\right\}$

is biholomorphically equivalent to the unit ball \mathbb{B}^{N} via Cayley transform: $\mathcal{C}: \mathbb{B}^{N} \rightarrow \mathbb{H}^{N}$

Siegel domain: $\mathbb{H}^{N}=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1}: R e z>\|w\|^{2}\right\}$
is biholomorphically equivalent to the unit ball \mathbb{B}^{N} via Cayley transform: $\mathcal{C}: \mathbb{B}^{N} \rightarrow \mathbb{H}^{N}$
$\mathcal{C}((z, w))=\left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad \mathcal{C}^{-1}((z, w))=\left(\frac{z-1}{z+1}, \frac{2 w}{z+1}\right)$

Siegel domain: $\mathbb{H}^{N}=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1}: R e z>\|w\|^{2}\right\}$ is biholomorphically equivalent to the unit ball \mathbb{B}^{N} via Cayley transform: $\mathcal{C}: \mathbb{B}^{N} \rightarrow \mathbb{H}^{N}$
$\mathcal{C}((z, w))=\left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad \mathcal{C}^{-1}((z, w))=\left(\frac{z-1}{z+1}, \frac{2 w}{z+1}\right)$

Horosphere at Denjoy-Wolff point ∞ and its image in \mathbb{H}^{N}

Crucial difference between \mathbb{D} and \mathbb{B}^{N} : all results and estimates are weaker in orthogonal dimensions.

Crucial difference between \mathbb{D} and \mathbb{B}^{N} : all results and estimates are weaker in orthogonal dimensions.

Pseudo-hyperbolic disk is a Euclidean disk

Pseudohyperbolic ball is
a Euclidean ellipsoid with $R>r$

$$
\text { and } \frac{R}{r} \rightarrow \infty \text { as } z \rightarrow \partial \mathbb{B}^{N}
$$

Theorem 1.(O —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{\wedge}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

Theorem 1.(O —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:
(1) There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } q$.

Theorem 1.(0 —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{\wedge}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:
(1) There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } q$.
(2) $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex q (Koranyi regions are weaker analogs of non-tangential regions in higher dimension).

Theorem 1.(0 —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:
(1) There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } q$.
(2) $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex q (Koranyi regions are weaker analogs of non-tangential regions in higher dimension).
(3) Julia's lemma holds for q with multiplier $\alpha \geq \frac{1}{c}>1$, i.e. $f(H(q, R)) \subset H(q, \alpha R) \forall R>0$.

Theorem 1.(0 —, 2010)

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:
(1) There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } q$.
(2) $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex q (Koranyi regions are weaker analogs of non-tangential regions in higher dimension).
(3) Julia's lemma holds for q with multiplier $\alpha \geq \frac{1}{c}>1$, i.e. $f(H(q, R)) \subset H(q, \alpha R) \forall R>0$.

Definition

A point $q \in \partial \mathbb{B}^{N}$ is called a boundary repelling fixed point if Julia's lemma holds for q with multiplier $\alpha>1$.

Idea of the proof in hyperbolic case:

$t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2} \sim c^{n}$ (by Julia's lemma)
$\mid \operatorname{pr}\left(Z_{n}\right)-\operatorname{pr}\left(Z_{n+1}\right) \| \leq C \sqrt{t_{n}} \sim c^{n / 2}$

Idea of the proof in hyperbolic case:

$t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2} \sim c^{n}($ by Julia's lemma)
$\left|\operatorname{pr}\left(Z_{n}\right)-\operatorname{pr}\left(Z_{n+1}\right)\right| \mid \leq C \sqrt{t_{n}} \sim c^{n / 2}$

Idea of the proof in hyperbolic case:

$t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2} \sim c^{n}($ by Julia's lemma)
$\left\|p r\left(Z_{n}\right)-\operatorname{pr}\left(Z_{n+1}\right)\right\| \leq C \sqrt{t_{n}} \sim c^{n / 2}$

In elliptic case we need the following

Lemma

Let f be a self-map of the unit ball \mathbb{B}^{N} fixing zero, not unitary on any slice. Fix $r_{0}>0$, define $M(r):=\max \left\|f\left(r \mathbb{B}^{N}\right)\right\|, r \in\left[r_{0}, 1\right)$. Then there exists $c<1$ such that

$$
\frac{1-r}{1-M(r)} \leq c \quad \forall r \in\left[r_{0}, 1\right)
$$

In elliptic case we need the following

Lemma

Let f be a self-map of the unit ball \mathbb{B}^{N} fixing zero, not unitary on any slice. Fix $r_{0}>0$, define $M(r):=\max \left\|f\left(r \mathbb{B}^{N}\right)\right\|, r \in\left[r_{0}, 1\right)$. Then there exists $c<1$ such that

$$
\frac{1-r}{1-M(r)} \leq c \quad \forall r \in\left[r_{0}, 1\right)
$$

Idea of the proof in elliptic case:

$$
t_{n}:=1-\left\|Z_{n}\right\| \sim c^{n} \text { (by lemma) }
$$

Idea of the proof in elliptic case:

$t_{n}:=1-\left\|Z_{n}\right\| \sim c^{n}$ (by lemma)
$\phi_{n}:=\operatorname{arc-length}\left(\frac{Z_{n}}{\left\|Z_{n}\right\|}, \frac{Z_{n+1}}{\left\|Z_{n+1}\right\|}\right) \sim \sqrt{t_{n}} \sim c^{n / 2}$

Idea of the proof in elliptic case:

$t_{n}:=1-\left\|Z_{n}\right\| \sim c^{n}$ (by lemma)
$\phi_{n}:=\operatorname{arc-length}\left(\frac{Z_{n}}{\left\|Z_{n}\right\|}, \frac{Z_{n+1}}{\left\|Z_{n+1}\right\|}\right) \sim \sqrt{t_{n}} \sim c^{n / 2}$

A BRFP with multiplier α is called isolated if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In 1-dimensional case all boundary fixed points are isolated (corollary of the theorem of Cowen and Pommerenke, 1982), so the above characterization is "if and only if".

A BRFP with multiplier α is called isolated if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated (corollary of the theorem of Cowen and Pommerenke, 1982), so the above characterization is "if and only if".

A BRFP with multiplier α is called isolated if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated (corollary of the theorem of Cowen and Pommerenke, 1982), so the above characterization is "if and only if".

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (0 -, 2010):
 $f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z, w)=\left(2 z+w^{2}, w\right)$, hyperbolic with multiplier 1/2 at the Denjoy-Wolff point ∞

Iterates: $f_{n}(z, w)=\left(2^{n} z+\left(2^{n}-1\right) w^{2}, w\right)$ Set of BRFP's: $\left\{\left(r^{2}, i r\right) \mid r \in \mathbb{R}\right\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (0 -, 2010):

$f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z, w)=\left(2 z+w^{2}, w\right)$, hyperbolic with multiplier $1 / 2$ at the Denjoy-Wolff point ∞

Iterates: $f_{n}(z, w)=\left(2^{n} z+\left(2^{n}-1\right) w^{2}, w\right)$ Set of BRFP's: $\left\{\left(r^{2}, i r\right) \mid r \in \mathbb{R}\right\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (0 -, 2010):

$f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z, w)=\left(2 z+w^{2}, w\right)$, hyperbolic with multiplier $1 / 2$ at the Denjoy-Wolff point ∞

Iterates: $f_{n}(z, w)=\left(2^{n} z+\left(2^{n}-1\right) w^{2}, w\right)$
Set of BRFP's: $\left\{\left(r^{2}, i r\right) \mid r \in \mathbb{R}\right\}$

Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a stable set at q.

```
The stable set at each BRFP (r,ir}\mp@subsup{}{}{2})\mathrm{ in the Example 1 is
{(z,r)|Rez> re}
BRFPP in THN N with stable set of dimension N are isolated.
(The conjecture is true for N=1 since all BRFPs are isolated in
1-dimensional case).
```


Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a stable set at q.

The stable set at each BRFP $\left(r, i r^{2}\right)$ in the Example 1 is $\left\{(z, r) \mid \operatorname{Re} z>r^{2}\right\}$ and has dimension 1.

BRFPs in \mathbb{H}^{N} with stable set of dimension N are isolated.
(The conjecture is true for $N=1$ since all BRFPs are isolated in
1-dimensional case).

Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a stable set at q.

The stable set at each BRFP $\left(r, i r^{2}\right)$ in the Example 1 is $\left\{(z, r) \mid \operatorname{Re} z>r^{2}\right\}$ and has dimension 1.

Conjecture

BRFPs in \mathbb{H}^{N} with stable set of dimension N are isolated.
(The conjecture is true for $N=1$ since all BRFPs are isolated in 1 -dimensional case).

(Semi) conjugations

Goal:

For self-map f of $\mathbb{D}\left(o r \mathbb{B}^{N}\right)$, solve an equation

$$
\psi \circ f=\eta_{f} \circ \psi
$$

where $\psi: \mathbb{D} \rightarrow \Omega$ (resp. $\psi: \mathbb{B}^{N} \rightarrow \Omega$) is unknown holomorphic function to a complex manifold Ω, and η_{f} is a simple map (e.g. biholomorphism) of Ω.

(Semi) conjugations

Goal:

For self-map f of $\mathbb{D}\left(o r \mathbb{B}^{N}\right)$, solve an equation

$$
\psi \circ f=\eta_{f} \circ \psi,
$$

where $\psi: \mathbb{D} \rightarrow \Omega\left(\right.$ resp. $\psi: \mathbb{B}^{N} \rightarrow \Omega$) is unknown holomorphic function to a complex manifold Ω, and η_{f} is a simple map (e.g. biholomorphism) of Ω.

Koenigs, 1884

If f is elliptic with $f^{\prime}(p) \neq 0$, then

$$
\psi \circ f=f^{\prime}(p) \cdot \psi
$$

with $\psi: \mathbb{D} \rightarrow \mathbb{C}$.

Koenigs, 1884

If f is elliptic with $f^{\prime}(p) \neq 0$, then

$$
\psi \circ f=f^{\prime}(p) \cdot \psi
$$

with $\psi: \mathbb{D} \rightarrow \mathbb{C}$.

Böttcher, 1904

If f is elliptic with $f^{\prime}(p)=0$, then

$$
\psi \circ f=\psi^{n}
$$

with ψ defined in a neighborhood of p.

Koenigs, 1884

If f is elliptic with $f^{\prime}(p) \neq 0$, then

$$
\psi \circ f=f^{\prime}(p) \cdot \psi
$$

with $\psi: \mathbb{D} \rightarrow \mathbb{C}$.

Böttcher, 1904

If f is elliptic with $f^{\prime}(p)=0$, then

$$
\psi \circ f=\psi^{n}
$$

with ψ defined in a neighborhood of p.

Valiron, 1913

If f is hyperbolic with $f^{\prime}(p)=c$, then

$$
\psi \circ f=\frac{1}{c} \cdot \psi
$$

with $\psi: \mathbb{D} \rightarrow \mathbb{H}$.

Pommerenke, Baker and Pommerenke, 1979

If f is parabolic, then

$$
\psi \circ f=\psi+1
$$

with $\psi: \mathbb{D} \rightarrow \mathbb{H}$ (non-zero step case) or $\psi: \mathbb{D} \rightarrow \mathbb{C}$ (zero step case).

Pommerenke, Baker and Pommerenke, 1979

If f is parabolic, then

$$
\psi \circ f=\psi+1
$$

with $\psi: \mathbb{D} \rightarrow \mathbb{H}$ (non-zero step case) or $\psi: \mathbb{D} \rightarrow \mathbb{C}$ (zero step case).

Poggi-Corradini, 2000 (backward iteration):

An analytic self-map of the unit disc $\mathbb{D} f$ with BRFP $1 \in \partial \mathbb{D}$ and multiplier α at 1 can be conjugated to the automorphism $\eta(z)=(z-a) /(1-a z)$, where $a=(\alpha-1) /(\alpha+1):$

$$
\psi \circ \eta(z)=f \circ \psi(z)
$$

via an analytic map ψ of \mathbb{D} with $\psi(\mathbb{D}) \subseteq \mathbb{D}$, which has non-tangential limit 1 at 1.

Conjugations in several dimensions

Bracci, Gentili, Poggi-Corradini, 2010; hyperbolic case

 Let $f: \mathbb{B}^{N} \rightarrow \mathbb{B}^{N}$ be a hyperbolic analytic self-map with Denjoy-Wolff point $p \in \partial \mathbb{B}^{N}$ and multiplier $c<1$. If(1) There exists special sequence $f_{n}\left(Z_{0}\right) \rightarrow p$ and
(2) the $K-\lim _{Z \rightarrow p} \frac{1-\langle f(Z), p\rangle}{1-\langle Z, p\rangle}$ exists,
then there is a non-constant analytic function $\psi: \mathbb{B}^{N} \rightarrow \mathbb{H}$ such that

$$
\psi \circ f=\frac{1}{c} \cdot \psi
$$

Theorem 2. (O -, 2009) (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1<\alpha<\infty$. Then f is conjugated to the automorphism $\eta(z, w)=(\alpha z, \sqrt{\alpha} w)$

$$
\psi \circ \eta(Z)=f \circ \psi(Z),
$$

via an analytic intertwining map ψ.

Construction of
where $p_{1}(z, w):=(z, 0)$ is the projection on the first (radial) dimension,

$$
\psi(z, w)=\psi(z, 0)
$$

and is essentially one-dimensional map.

Theorem 2. (O -, 2009) (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1<\alpha<\infty$. Then f is conjugated to the automorphism $\eta(z, w)=(\alpha z, \sqrt{\alpha} w)$

$$
\psi \circ \eta(Z)=f \circ \psi(Z),
$$

via an analytic intertwining map ψ.

Construction of ψ :

$$
\psi=\lim _{n \rightarrow \infty}\left\{f_{n} \circ \tau_{n} \circ p_{1}\right\}
$$

where $p_{1}(z, w):=(z, 0)$ is the projection on the first (radial) dimension, so
\square
and is essentially one-dimensional map.

Theorem 2. (O -, 2009) (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1<\alpha<\infty$. Then f is conjugated to the automorphism $\eta(z, w)=(\alpha z, \sqrt{\alpha} w)$

$$
\psi \circ \eta(Z)=f \circ \psi(Z),
$$

via an analytic intertwining map ψ.

Construction of ψ :

$$
\psi=\lim _{n \rightarrow \infty}\left\{f_{n} \circ \tau_{n} \circ p_{1}\right\}
$$

where $p_{1}(z, w):=(z, 0)$ is the projection on the first (radial) dimension, so

$$
\psi(z, w)=\psi(z, 0)
$$

and is essentially one-dimensional map.

The image of ψ in \mathbb{H}^{N} :

The image of ψ in \mathbb{H}^{N} :

Corollary

Since image of ψ is always a subset of stable set, the dimension of stable set is at least 1 .

Theorem 3. (O -, 2009)

Under some regularity condition, it is possible to improve ψ such that

$$
\psi(z, w)=\psi\left(p_{L}(z, w)\right)
$$

where p_{L} is a projection on the first L dimensions.

Condition is

$$
f(z, w)=\left(\alpha z+o(|z|), A w+o\left(|z|^{1 / 2}\right)\right)
$$

Theorem 3. (O -, 2009)

Under some regularity condition, it is possible to improve ψ such that

$$
\psi(z, w)=\psi\left(p_{L}(z, w)\right)
$$

where p_{L} is a projection on the first L dimensions.

Condition is

$$
f(z, w)=\left(\alpha z+o(|z|), A w+o\left(|z|^{1 / 2}\right)\right)
$$

e.g. $\boldsymbol{A}=\operatorname{Diag}\left(\sqrt{\alpha}, \ldots \sqrt{\alpha}, \beta_{1}, \ldots \beta_{N-L}\right)$, where $\beta_{j}<\sqrt{\alpha}$

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
b = 0 parabolic zero-step type

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
b > 0 parabolic non-zero step type
$b=0$ parabolic zero-step type
non-zero step

tangentially

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type

tangentially
zero step

radially

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type
non-zero step

tangentially
zero step

radially

other: not known

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Open question

Is it true that if $d_{\mathbb{B}^{N}}\left(f_{n}\left(Z_{0}\right), f_{n+1}\left(Z_{0}\right)\right) \rightarrow 0$ for some $Z_{0} \in \mathbb{B}^{N}$, then $d_{\mathbb{B}^{N}}\left(f_{n}(Z), f_{n+1}(Z)\right) \rightarrow 0$ for all $Z \in \mathbb{B}^{N}$?

Claim
If the sequence of forward iterates $\left\{Z_{n}\right\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \rightarrow 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^{N} are:
\square
\square

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Open question

Is it true that if $d_{\mathbb{B}}\left(f_{n}\left(Z_{0}\right), f_{n+1}\left(Z_{0}\right)\right) \rightarrow 0$ for some $Z_{0} \in \mathbb{B}^{N}$, then $d_{\mathbb{B}^{N}}\left(f_{n}(Z), f_{n+1}(Z)\right) \rightarrow 0$ for all $Z \in \mathbb{B}^{N}$?

Claim

If the sequence of forward iterates $\left\{Z_{n}\right\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \rightarrow 0$. In particular, non-zero-step sequence cannot converge non-tangentially.
\square
The only known parabolic examples in \mathbb{H}^{N} are

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Open question

Is it true that if $d_{\mathbb{B}^{N}}\left(f_{n}\left(Z_{0}\right), f_{n+1}\left(Z_{0}\right)\right) \rightarrow 0$ for some $Z_{0} \in \mathbb{B}^{N}$, then $d_{\mathbb{B}^{N}}\left(f_{n}(Z), f_{n+1}(Z)\right) \rightarrow 0$ for all $Z \in \mathbb{B}^{N}$?

Claim

If the sequence of forward iterates $\left\{Z_{n}\right\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \rightarrow 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^{N} are:

- Automorphisms (translations):
$(z, w) \longmapsto\left(z+z_{0}+2\left\langle w, w_{0}\right\rangle, w+w_{0}\right)$ for some $\left(z_{0}, w_{0}\right) \in \partial \mathbb{H}^{N}$.
- Example 2. (O —, 2010):

Given one-dimensional $\phi: \mathbb{H} \rightarrow \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy,
construct $f(z, w):=\left(\phi\left(z-w^{2}\right)+w^{2}, w\right)$. Then:
f is the self-map of \mathbb{H}^{2} with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ.
f has a 1-dimensional real submanifold $\left\{\left(i y_{0}+t^{2}, t\right) \mid t \in \mathbb{R}\right\}$ of BRFPs.

- Example 2. (O —, 2010):

Given one-dimensional $\phi: \mathbb{H} \rightarrow \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy, construct $f(z, w):=\left(\phi\left(z-w^{2}\right)+w^{2}, w\right)$. Then:
f is the self-map of \mathbb{H}^{2} with the Denjoy-Wolff point ∞ and has the
same type and same multiplier at ∞ as ϕ.
f has a 1 -dimensional real submanifold $\left\{\left(i y_{0}+t^{2}, t\right) \mid t \in \mathbb{R}\right\}$ of BRFPs.

- Example 2. (O -, 2010):

Given one-dimensional $\phi: \mathbb{H} \rightarrow \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy, construct $f(z, w):=\left(\phi\left(z-w^{2}\right)+w^{2}, w\right)$. Then: f is the self-map of \mathbb{H}^{2} with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ.

- Example 2. (O -, 2010):

Given one-dimensional $\phi: \mathbb{H} \rightarrow \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy, construct $f(z, w):=\left(\phi\left(z-w^{2}\right)+w^{2}, w\right)$. Then:
f is the self-map of \mathbb{H}^{2} with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ. f has a 1-dimensional real submanifold $\left\{\left(i y_{0}+t^{2}, t\right) \mid t \in \mathbb{R}\right\}$ of BRFPs.

- Example 2. (O —, 2010):

Given one-dimensional $\phi: \mathbb{H} \rightarrow \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy, construct $f(z, w):=\left(\phi\left(z-w^{2}\right)+w^{2}, w\right)$. Then: f is the self-map of \mathbb{H}^{2} with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ. f has a 1-dimensional real submanifold $\left\{\left(i y_{0}+t^{2}, t\right) \mid t \in \mathbb{R}\right\}$ of BRFPs.

Future goals

- Dimension of stable set at the BRFP q

- Conjugation for non-isolated fixed points

- Parabolic case

Future goals

- Dimension of stable set at the BRFP q
- Conjugation for non-isolated fixed points

Future goals

- Dimension of stable set at the BRFP q
- Conjugation for non-isolated fixed points
- Parabolic case

Thank you!

http://arxiv.org/abs/0910.5451

