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One-dimensional case
Forward iteration

Let f be analytic self-map of D = {z : |z| < 1}
n-th iterate of f fn = f ◦ . . . ◦ f︸ ︷︷ ︸

n times
By Schwarz’s lemma, f is a contraction in the pseudo-hyperbolic
metric

d(z,w) =

∣∣∣∣ z − w
1− wz

∣∣∣∣
Theorem (Denjoy-Wolff)
If a self-map of the disk f is not an elliptic automorphism, then there
exist a unique point p ∈ D such that the sequence fn(z) converges
uniformly on compact subsets to p.
if p ∈ D, then f (p) = p and |f ′(p)| < 1
if p ∈ ∂D, then f (p) = p and 0 < f ′(p) ≤ 1 in the sense of
non-tangential limits
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The point p is called the Denjoy-Wolff point of f .

Cases:
1.p ∈ D f is called elliptic

2.p ∈ ∂D, f ′(p) < 1 hyperbolic

3.p ∈ ∂D, f ′(p) = 1 parabolic
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If p ∈ ∂D, Julia’s lemma holds for the point p, and multiplier
c = f ′(p) ≤ 1:

∀R > 0 f (H(p,R)) ⊆ H(p, cR),

where H(p,R) is a horocycle at p ∈ ∂D of radius R :

H(p,R) :=

{
z ∈ D :

|p − z|2

1− |z|2
< R

}
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Backward iteration

Backward-iteration sequence:
{zn}∞n=0, f (zn+1) = zn for n = 0,1,2 . . .
The sequence d(zn, zn+1) is increasing, so we need a bound on the
pseudo-hyperbolic step: d(zn, zn+1) ≤ a < 1

Theorem (Poggi-Corradini, 2003)
Let {zn}∞n=0 be a backward-iteration sequence for analytic self-map of
the disk f with bounded pseudo-hyperbolic step d(zn, zn+1) ≤ a < 1.
Then:
1. zn → q ∈ ∂D, and q is a fixed point with a well-defined multiplier
f ′(q) <∞
2. If q 6= p, then q is a boundary repelling fixed point (BRFP) (i.e.
f ′(q) > 1). If q = p, f is of parabolic type.
3. When q is BRFP, the convergence zn → q is non-tangential.
4. If q = p, then zn → q tangentially.
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Multi-dimensional case

CN , inner product (Z ,W ) =
N∑

j=1

ZjWj , ‖Z‖2 = (Z ,Z )

Unit ball BN = {Z ∈ CN : ‖Z‖ < 1}

Julia’s lemma in BN

Let f be a holomorphic self-map of BN and X ∈ ∂BN such that

lim inf
Z→X

1− ‖f (Z )‖
1− ‖Z‖

= α <∞

Then there exists a unique Y ∈ ∂BN such that ∀R > 0
f (H(X ,R)) ⊂ H(Y , αR).

Horosphere of center X ∈ ∂BN and radius R > 0:

H(X ,R) =

{
Z ∈ BN :

|1− (Z ,X )|2

1− ‖Z‖2
< R

}
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Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)
If f has no fixed points in BN , then fn converges uniformly on compacta

to p ∈ ∂BN , the number c := lim inf
Z→p

1− ‖f (Z )‖
1− ‖Z‖

∈ (0,1] is a multiplier of

f at p.
f is called hyperbolic if c < 1 and parabolic if c = 1.

Siegel domain:
HN = {(z,w) ∈ C× CN−1 : Rez > ‖w‖2}

Cayley transform: C : BN → HN

C((z,w)) =

(
1 + z
1− z

,
w

1− z

)
C−1((z,w)) =

(
z − 1
z + 1

,
2w

z + 1

)
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Elliptic case: f has unique fixed point inside of the ball (WLOG fixed
point is 0) and f is not unitary of any slice (i.e. with
‖f (Z )‖ < ‖Z‖ ∀Z ∈ BN\{0}).

Theorem 1.
Let f be a analytic self-map of BN of hyperbolic or elliptic type, {Zn} be
a backward-iteration sequence with bounded pseudo-hyperbolic step
dBN (Zn,Zn+1) ≤ a < 1. Then:
1. There exists a point ∂BN 3 τ 6= p such that Zn −−−→n→∞

τ

2. {Zn} stays in a Koranyi region with vertex τ
3. Julia’s lemma holds for τ with multiplier α ≥ 1

c , i.e.
f (H(τ,R)) ⊂ H(τ, αR) ∀R > 0
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Idea of the proof in hyperbolic case:

tn := Re zn − ‖wn‖2 ∼ cn (by Julia’s lemma)

‖pr(Zn)− pr(Zn+1)‖ ≤ C
√

tn ∼ cn/2
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Lemma
Let f be a self-map of the unit ball BN fixing zero, not unitary on any
slice. Fix r0 > 0, define M(r) := max ‖f (rBN)‖, r ∈ [r0,1). Then there
exists c < 1 such that

1− r
1−M(r)

≤ c ∀r ∈ [r0,1)
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Idea of the proof in elliptic case:

tn := 1− ‖Zn‖ ∼ cn (by lemma)

φn :=arc-length( Zn
‖Zn‖ ,

Zn+1
‖Zn+1‖) ∼

√
tn ∼ cn/2
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Since α ≥ 1
c > 1, the point τ ∈ ∂BN is called the boundary repelling

fixed point (BRFP) for f .

Characterization of BRFP in terms of backward-iteration sequences:
Every backward-iteration sequence with bounded hyperbolic step
converges to a BRFP; and if BRFP is isolated, then we can construct a
backward-iteration sequence with bounded hyperbolic step that
converges to it.
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Problem:
Unlike in 1-dimensional case, not all BRFP’s are isolated

Counterexample: f : H2 → H2, f (z,w) = (2z + w2,w)

Set of BRFP’s:
{
(r2, ir) |r ∈ R

}
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Conjugations

Theorem 2. (N-dimensional case, backward iteration)
Suppose f : HN → HN is an analytic function and 0 is an isolated
boundary repelling fixed point for f with multiplier 1 < α <∞. Then f is
conjugated to the automorphism η(z,w) = (αz,

√
αw)

ψ ◦ η(Z ) = f ◦ ψ(Z ),

via an analytic intertwining map ψ.

Construction of ψ:
ψ = lim

n→∞
{fn ◦ τn ◦ p1}

where p1(z,w) := (z,0) is the projection on the first (radial) dimension,
so

ψ(z,w) = ψ(z,0)

and is essentially one-dimensional map.
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The image of ψ in HN :
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Conjugation for expandable maps

Theorem 3.
Under some regularity condition, it is possible to improve ψ such that

ψ(z,w) = ψ(pL(z,w)),

where pL is a projection on the first L dimensions.

Condition is

f (z,w) = (αz + o(|z|),Aw + o(|z|1/2))

e.g. A = Diag (
√
α, . . .

√
α, β1, . . . βN−L), where βj <

√
α
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Future goals

• Dimension of stable set at the BRFP q (union of all backward
iteration sequences with bounded step tending to q)

• Conjugation for non-isolated fixed points

• Parabolic case
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Parabolic case in the disk
Since d(zn, zn+1) ≤ d(zn−1, zn), pseudo-hyperbolic step
dn := d(zn, zn+1) must have limit: dn −−−→n→∞

b

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

Olena Ostapyuk (K-State) Backward iteration in the unit ball 05-22-10 18 / 19



Parabolic case in the disk
Since d(zn, zn+1) ≤ d(zn−1, zn), pseudo-hyperbolic step
dn := d(zn, zn+1) must have limit: dn −−−→n→∞

b

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

Olena Ostapyuk (K-State) Backward iteration in the unit ball 05-22-10 18 / 19



Parabolic case in the disk
Since d(zn, zn+1) ≤ d(zn−1, zn), pseudo-hyperbolic step
dn := d(zn, zn+1) must have limit: dn −−−→n→∞

b

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

Olena Ostapyuk (K-State) Backward iteration in the unit ball 05-22-10 18 / 19



Parabolic case in the disk
Since d(zn, zn+1) ≤ d(zn−1, zn), pseudo-hyperbolic step
dn := d(zn, zn+1) must have limit: dn −−−→n→∞

b

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

non-zero step

tangentially

Olena Ostapyuk (K-State) Backward iteration in the unit ball 05-22-10 18 / 19



Parabolic case in the disk
Since d(zn, zn+1) ≤ d(zn−1, zn), pseudo-hyperbolic step
dn := d(zn, zn+1) must have limit: dn −−−→n→∞

b

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

non-zero step zero step

tangentially radially

Olena Ostapyuk (K-State) Backward iteration in the unit ball 05-22-10 18 / 19



Parabolic case in the disk
Since d(zn, zn+1) ≤ d(zn−1, zn), pseudo-hyperbolic step
dn := d(zn, zn+1) must have limit: dn −−−→n→∞

b

Subcases (do not depend on the choice of sequence):

b > 0 parabolic non-zero step type

b = 0 parabolic zero-step type

non-zero step zero step

tangentially radially other: not known

?
Olena Ostapyuk (K-State) Backward iteration in the unit ball 05-22-10 18 / 19



Parabolic case in the ball: Zero and non-zero step cases only for
sequences.

Claim.
If the sequence of forward iterates {Zn}∞n=1 for parabolic self-map of
the unit ball is restricted, then it must have zero step, i.e.
dBN (Zn,Zn+1)→ 0. In particular, non-zero-step sequence cannot
converge non-tangentially.
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