Backward iteration in the unit ball

Olena Ostapyuk

Department of Mathematics
Kansas State University

Conference on Complex Analysis in honor of David Drasin and Linda Sons University of Illinois at Urbana-Champaign

One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}$
n times
By Schwarz's Iemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|
$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \bar{D}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p.
if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$
if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of
non-tangential limits

One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$

n times
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|
$$

Theorem (Denjoy-Wolff)
If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \bar{D}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p.
if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$
if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of
non-tangential limits

One-dimensional case

Forward iteration

```
Let f}\mathrm{ be analytic self-map of }\mathbb{D}={z:|z|<1
n-th iterate of }f\mp@subsup{f}{n}{}=\mp@subsup{\underbrace}{n\mathrm{ times}}{f\circ\ldots\circf
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic
metric
d(z,w)=|\frac{z-w}{1-\overline{W}z}
Theorem (Denjoy-Wolff)
If a self-map of the disk \(f\) is not an elliptic automorphism, then there exist a unique point \(p \in \mathbb{D}\) such that the sequence \(f_{n}(z)\) converges uniformly on compact subsets to \(p\).
if \(p \in \mathbb{D}\), then \(f(p)=p\) and \(\left|f^{\prime}(p)\right|<1\)
if \(p \in \partial \mathbb{D}\), then \(f(p)=p\) and \(0<f^{\prime}(p) \leq 1\) in the sense of
non-tangential limits
```


One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}_{n \text { times }}$
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|
$$

> Theorem (Denjoy-Wolff)
> If a self-man of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \mathbb{D}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$ if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of non-tangential limits

One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}_{n \text { tios }}$
n times
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{W} z}\right|
$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p. if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$ if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of non-tangential limits

The point p is called the Denjoy-Wolff point of f.

Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic

The point p is called the Denjoy-Wolff point of f.
Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
$3 . p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Elliptic

The point p is called the Denjoy-Wolff point of f.
Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
$3 . p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Hyperbolic

The point p is called the Denjoy-Wolff point of f.
Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
3. $p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Parabolic

The point p is called the Denjoy-Wolff point of f.
Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
3. $p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

Elliptic

Hyperbolic

Parabolic

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R)
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R),
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

$$
H(p, R):=\left\{z \in \mathbb{D}: \frac{|p-z|^{2}}{1-|z|^{2}}<R\right\}
$$

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R),
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

$$
H(p, R):=\left\{z \in \mathbb{D}: \frac{|p-z|^{2}}{1-|z|^{2}}<R\right\}
$$

Backward iteration

Backward-iteration sequence:

$\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$ for $n=0,1,2 \ldots$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)
Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$.
Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e.
$\left.f^{\prime}(q)>1\right)$. If $q=p, f$ is of parabolic type.
3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential.
4. If $q=p$, then $z_{n} \rightarrow q$ tangentially.

Backward iteration

Backward-iteration sequence:

$\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$ for $n=0,1,2 \ldots$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

```
Theorem (Poggi-Corradini, 2003)
Let {\mp@subsup{z}{n}{}\mp@subsup{}}{n=0}{\infty}\mathrm{ be a backward-iteration sequence for analytic self-map of}\
the disk f with bounded pseudo-hyperbolic step d( 
Then:
1. }\mp@subsup{z}{n}{}->q\in\partial\mathbb{D}\mathrm{ , and q is a fixed point with a well-defined multiplier
f}(q)<
2. If q}\not=p\mathrm{ , then q is a boundary repelling fixed point (BRFP) (i.e.
f}(q)>1). If q=p,f is of parabolic type
3. When q}\mathrm{ is BRFP, the convergence }\mp@subsup{z}{n}{}->q\mathrm{ is non-tangential.
4. If }q=p, then \mp@subsup{z}{n}{}->q\mathrm{ tangentially.
```


Backward iteration

Backward-iteration sequence:
$\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$ for $n=0,1,2 \ldots$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier
\square 3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential. 4. If $q=p$, then $z_{n} \rightarrow q$ tangentially.

Backward iteration

Backward-iteration sequence:
$\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$ for $n=0,1,2 \ldots$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$

Backward iteration

Backward-iteration sequence:
$\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$ for $n=0,1,2 \ldots$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. $\left.f^{\prime}(q)>1\right)$. If $q=p, f$ is of parabolic type.

Backward iteration

Backward-iteration sequence:
$\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$ for $n=0,1,2 \ldots$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. $\left.f^{\prime}(q)>1\right)$. If $q=p, f$ is of parabolic type.
3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential.

Backward iteration

Backward-iteration sequence:
$\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$ for $n=0,1,2 \ldots$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step: $d\left(z_{n}, z_{n+1}\right) \leq a<1$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. $\left.f^{\prime}(q)>1\right)$. If $q=p, f$ is of parabolic type.
3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential.
4. If $q=p$, then $z_{n} \rightarrow q$ tangentially.

Multi-dimensional case

$$
\begin{aligned}
& \mathbb{C}^{N} \text {, inner product }(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z) \\
& \text { Unit ball } \mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\} \\
& \text { Julia's Iemma in } \mathbb{B}^{N} \\
& \text { Let } f \text { be a holomorphic self-map of } \mathbb{B}^{N} \text { and } X \in \partial B^{N} \text { such that } \\
& \text { liminf } 1-\|f(Z)\| \\
& Z-X-\|Z\| \\
& \text { Then there exists a unique } Y \in \partial \mathbb{B}^{N} \text { such that } \forall R>0 \\
& f(H(X, R)) \subset H(Y, a R) \text {. }
\end{aligned}
$$

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z)$
Unit ball $\mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\}$
Julia's lemma in \mathbb{B}^{N}
Let f be a holomorphic self-map of \mathbb{B}^{N} and $X \in \partial \mathbb{B}^{N}$ such that

Then there exists a unique $Y \in \partial \mathbb{B}^{N}$ such that $\forall R>0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^{N}$ and radius $R>0$:

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z)$
Unit ball $\mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\}$

Julia's lemma in \mathbb{B}^{N}

Let f be a holomorphic self-map of \mathbb{B}^{N} and $X \in \partial \mathbb{B}^{N}$ such that $\liminf _{Z \rightarrow X} \frac{1-\|f(Z)\|}{1-\|Z\|}=\alpha<\infty$
Then there exists a unique $Y \in \partial \mathbb{B}^{N}$ such that $\forall R>0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}},\|Z\|^{2}=(Z, Z)$
Unit ball $\mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\}$

Julia's lemma in \mathbb{B}^{N}

Let f be a holomorphic self-map of \mathbb{B}^{N} and $X \in \partial \mathbb{B}^{N}$ such that $\liminf _{Z \rightarrow X} \frac{1-\|f(Z)\|}{1-\|Z\|}=\alpha<\infty$
Then there exists a unique $Y \in \partial \mathbb{B}^{N}$ such that $\forall R>0$ $f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^{N}$ and radius $R>0$:
$H(X, R)=\left\{Z \in \mathbb{B}^{N}: \frac{|1-(Z, X)|^{2}}{1-\|Z\|^{2}}<R\right\}$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.
Siegel domain:

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.

Siegel domain:

$\mathbb{H}^{N}=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1}: \operatorname{Rez}>\|w\|^{2}\right\}$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.

Siegel domain:

$\mathbb{H}^{N}=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1}: \operatorname{Rez}>\|w\|^{2}\right\}$
Cayley transform: $\mathcal{C}: \mathbb{B}^{N} \rightarrow \mathbb{H}^{N}$
$\mathcal{C}((z, w))=\left(\frac{1+z}{1-z}, \frac{w}{1-z}\right)$
$\mathcal{C}^{-1}((z, w))=\left(\frac{z-1}{z+1}, \frac{2 w}{z+1}\right)$

Elliptic case: f has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\|f(Z)\|<\|Z\| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.

```
Theorem }1
Let f be a analytic self-map of B}\mp@subsup{\mathbb{B}}{}{N}\mathrm{ of hyperbolic or elliptic type, {Zn} be
a backward-iteration sequence with bounded pseudo-hyperbolic step
d
1. There exists a point }\partial\mp@subsup{\mathbb{B}}{}{N}\ni\tau\not=p\mathrm{ such that }\mp@subsup{Z}{n}{}\xrightarrow{n->\infty}{\longrightarrow
2. {\mp@subsup{Z}{n}{}} stays in a Koranyi region with vertex \tau
3. Julia's lemma holds for }\tau\mathrm{ with multiplier }a\geq\frac{1}{c}\mathrm{ , i.e.
f(H(\tau,R))\subsetH(\tau,\alphaR)\forallR>0
```

Elliptic case: f has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\|f(Z)\|<\|Z\| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.

Theorem 1.

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that Z_{n}
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex τ
3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e.

Elliptic case: f has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\|f(Z)\|<\|Z\| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.

Theorem 1.

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } \tau$
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex τ
3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e.
\square

Elliptic case: f has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\|f(Z)\|<\|Z\| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.

Theorem 1.

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } \tau$
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex τ

Elliptic case: f has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\left.\|f(Z)\|<\|Z\| \forall Z \in \mathbb{B}^{N} \backslash\{0\}\right)$.

Theorem 1.

Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic or elliptic type, $\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } \tau$
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region with vertex τ
3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, i.e. $f(H(\tau, R)) \subset H(\tau, \alpha R) \forall R>0$

Idea of the proof in hyperbolic case:

$$
t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2} \sim c^{n}(\text { by Julia's lemma })
$$

$\left\|p r\left(Z_{n}\right)-\operatorname{pr}\left(Z_{n+1}\right)\right\| \leq C \sqrt{t_{n}} \sim c^{n / 2}$

Idea of the proof in hyperbolic case:

$t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2} \sim c^{n}$ (by Julia's lemma)
$\left|\operatorname{pr}\left(Z_{n}\right)-\operatorname{pr}\left(Z_{n+1}\right)\right| \mid \leq C \sqrt{t_{n}} \sim c^{n / 2}$

Idea of the proof in hyperbolic case:

$t_{n}:=\operatorname{Re} z_{n}-\left\|w_{n}\right\|^{2} \sim c^{n}$ (by Julia's lemma)
$\left\|p r\left(Z_{n}\right)-\operatorname{pr}\left(Z_{n+1}\right)\right\| \leq C \sqrt{t_{n}} \sim c^{n / 2}$

Lemma

Let f be a self-map of the unit ball \mathbb{B}^{N} fixing zero, not unitary on any slice. Fix $r_{0}>0$, define $M(r):=\max \left\|f\left(r \mathbb{B}^{N}\right)\right\|, r \in\left[r_{0}, 1\right)$. Then there exists $c<1$ such that

$$
\frac{1-r}{1-M(r)} \leq c \quad \forall r \in\left[r_{0}, 1\right)
$$

Lemma

Let f be a self-map of the unit ball \mathbb{B}^{N} fixing zero, not unitary on any slice. Fix $r_{0}>0$, define $M(r):=\max \left\|f\left(r \mathbb{B}^{N}\right)\right\|, r \in\left[r_{0}, 1\right)$. Then there exists $c<1$ such that

$$
\frac{1-r}{1-M(r)} \leq c \quad \forall r \in\left[r_{0}, 1\right)
$$

Idea of the proof in elliptic case:

$$
t_{n}:=1-\left\|Z_{n}\right\| \sim c^{n} \text { (by lemma) }
$$

$\phi_{n}:=\operatorname{arc-length}\left(\frac{Z_{n}}{\left\|Z_{n}\right\|}, \frac{Z_{n+1}}{\left\|Z_{n+1}\right\|}\right) \sim \sqrt{t_{n}} \sim c^{n / 2}$

Idea of the proof in elliptic case:

$t_{n}:=1-\left\|Z_{n}\right\| \sim c^{n}$ (by lemma)
$\phi_{n}:=\operatorname{arc-length}\left(\frac{z_{n}}{\left\|Z_{n}\right\|}, \frac{Z_{n+1}}{\left\|Z_{n+1}\right\|}\right)$

Idea of the proof in elliptic case:

$t_{n}:=1-\left\|Z_{n}\right\| \sim c^{n}$ (by lemma)
$\phi_{n}:=\operatorname{arc-length}\left(\frac{Z_{n}}{\left\|Z_{n}\right\|}, \frac{Z_{n+1}}{\left\|Z_{n+1}\right\|}\right) \sim \sqrt{t_{n}} \sim c^{n / 2}$

Since $\alpha \geq \frac{1}{c}>1$, the point $\tau \in \partial \mathbb{B}^{N}$ is called the boundary repelling fixed point (BRFP) for f.

> Characterization of BRFP in terms of backward-iteration sequences: Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

Since $\alpha \geq \frac{1}{c}>1$, the point $\tau \in \partial \mathbb{B}^{N}$ is called the boundary repelling fixed point (BRFP) for f.

Characterization of BRFP in terms of backward-iteration sequences: Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated

Counterexample: $f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z, w)=\left(2 z+w^{2}, w\right)$

Set of BRFP's: $\left\{\left(r^{2}, i r\right) \mid r \in \mathbb{R}\right\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated
Counterexample: $f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z, w)=\left(2 z+w^{2}, w\right)$
Set of BRFP's: $\left\{\left(r^{2}, i r\right) \mid r \in \mathbb{R}\right\}$

Problem:

Unlike in 1-dimensional case, not all BRFP's are isolated
Counterexample: $f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z, w)=\left(2 z+w^{2}, w\right)$
Set of BRFP's: $\left\{\left(r^{2}, i r\right) \mid r \in \mathbb{R}\right\}$

Conjugations

Theorem 2. (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1<\alpha<\infty$. Then f is conjugated to the automorphism $\eta(z, w)=(\alpha z, \sqrt{\alpha} w)$

$$
\psi \circ \eta(Z)=f \circ \psi(Z),
$$

via an analytic intertwining map ψ.
Construction of 2

where $p_{1}(z, w):=(z, 0)$ is the projection on the first (radial) dimension, so

$$
\psi(z, w)=\psi(z, 0)
$$

and is essentially one-dimensional map.

Conjugations

Theorem 2. (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1<\alpha<\infty$. Then f is conjugated to the automorphism $\eta(z, w)=(\alpha z, \sqrt{\alpha} w)$

$$
\psi \circ \eta(Z)=f \circ \psi(Z)
$$

via an analytic intertwining map ψ.
Construction of ψ :

$$
\psi=\lim _{n \rightarrow \infty}\left\{f_{n} \circ \tau_{n} \circ p_{1}\right\}
$$

where $p_{1}(z, w):=(z, 0)$ is the projection on the first (radial) dimension, so

and is essentially one-dimensional map.

Conjugations

Theorem 2. (N-dimensional case, backward iteration)

Suppose $f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1<\alpha<\infty$. Then f is conjugated to the automorphism $\eta(z, w)=(\alpha z, \sqrt{\alpha} w)$

$$
\psi \circ \eta(Z)=f \circ \psi(Z)
$$

via an analytic intertwining map ψ.
Construction of ψ :

$$
\psi=\lim _{n \rightarrow \infty}\left\{f_{n} \circ \tau_{n} \circ p_{1}\right\}
$$

where $p_{1}(z, w):=(z, 0)$ is the projection on the first (radial) dimension, so

$$
\psi(z, w)=\psi(z, 0)
$$

and is essentially one-dimensional map.

The image of ψ in \mathbb{H}^{N} :

Conjugation for expandable maps

Theorem 3.

Under some regularity condition, it is possible to improve ψ such that

$$
\psi(z, w)=\psi\left(p_{L}(z, w)\right)
$$

where p_{L} is a projection on the first L dimensions.
Condition is

$$
f(z, w)=\left(\alpha z+o(|z|), A w+o\left(|z|^{1 / 2}\right)\right)
$$

Conjugation for expandable maps

Theorem 3.

Under some regularity condition, it is possible to improve ψ such that

$$
\psi(z, w)=\psi\left(p_{L}(z, w)\right)
$$

where p_{L} is a projection on the first L dimensions.
Condition is

$$
f(z, w)=\left(\alpha z+o(|z|), A w+o\left(|z|^{1 / 2}\right)\right)
$$

e.g. $A=\operatorname{Diag}\left(\sqrt{\alpha}, \ldots \sqrt{\alpha}, \beta_{1}, \ldots \beta_{N-L}\right)$, where $\beta_{j}<\sqrt{\alpha}$

Future goals

- Dimension of stable set at the BRFP q (union of all backward iteration sequences with bounded step tending to q)

- Conjugation for non-isolated fixed points

- Parabolic case

Future goals

- Dimension of stable set at the BRFP q (union of all backward iteration sequences with bounded step tending to q)
- Conjugation for non-isolated fixed points
- Parabolic case

Future goals

- Dimension of stable set at the BRFP q (union of all backward iteration sequences with bounded step tending to q)
- Conjugation for non-isolated fixed points
- Parabolic case

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type

non-zero step

tangentially

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type

tangentially

Parabolic case in the disk

Since $d\left(z_{n}, z_{n+1}\right) \leq d\left(z_{n-1}, z_{n}\right)$, pseudo-hyperbolic step $d_{n}:=d\left(z_{n}, z_{n+1}\right)$ must have limit: $d_{n} \xrightarrow[n \rightarrow \infty]{ } b$

Subcases (do not depend on the choice of sequence):
$b>0$ parabolic non-zero step type
$b=0$ parabolic zero-step type

tangentially
zero step

radially

other: not known

Parabolic case in the ball: Zero and non-zero step cases only for sequences.

```
Claim.
If the sequence of forward iterates {\mp@subsup{Z}{n}{}\mp@subsup{}}{n=1}{\infty}\mathrm{ for parabolic self-map of}
the unit ball is restricted, then it must have zero step, i.e.
d}\mp@subsup{\mathbb{B}}{}{N}(\mp@subsup{Z}{n}{},\mp@subsup{Z}{n+1}{})->0. In particular, non-zero-step sequence canno
converge non-tangentially.
```


Parabolic case in the ball: Zero and non-zero step cases only for

 sequences.
Claim.

If the sequence of forward iterates $\left\{Z_{n}\right\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e.
$d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \rightarrow 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

