
BACKWARD ITERATION IN THE UNIT BALL

OLENA OSTAPYUK

Abstract. We will consider iteration of an analytic self-map f of the unit ball in C
N . Many

facts were established about such dynamics in the 1-dimensional case (i.e. for self-maps of
the unit disk), and we will generalize some of them in higher dimensions. In particular, in
the case when f is hyperbolic or elliptic, it will be shown that backward-iteration sequences
with bounded hyperbolic step converge to a point on the boundary. These points will be
called boundary repelling fixed points and will possess several nice properties. At each
isolated boundary repelling fixed point we will also construct a (semi) conjugation of f to
an automorphism via an analytic intertwining map. We will finish with some new examples.

1. Introduction

1.1. One-dimensional case.

1.1.1. Forward iteration. Let f be an analytic self-map of the unit disk D. Denote fn = f ◦n

and consider the sequence of forward iterates zn = fn(z0). By Schwarz’s lemma, f is a

contraction of the pseudo-hyperbolic metric, so the sequence d(zn, zn+1) is decreasing, where

d(z, w) :=

∣

∣

∣

∣

z − w

1 − wz

∣

∣

∣

∣

, ∀z, w ∈ D.

Theorem 1.1 (Denjoy-Wolff). If f is not an elliptic automorphism, then there exists a

unique point p ∈ D (called the Denjoy-Wolff point of f) such that the sequence of iterates

{fn} converges to p uniformly on compact subsets of D.

Consider first the case p ∈ ∂D. It can be shown that f(p) = p and f ′(p) = c ∈ (0, 1] in

the sense of non-tangential limits, and the point p can thus be called ”attracting”. More

geometrically, Julia’s lemma holds for the point p, i.e.

∀R > 0 f (H(p,R)) ⊆ H(p, cR),(1.1)

where H(p,R) is a horocycle at p ∈ ∂D of radius R (see Figure 1),

H(p,R) :=

{

z ∈ D :
|p− z|2
1 − |z|2 < R

}

.
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Figure 1. Julia’s lemma at the Denjoy-Wolff point p ∈ ∂D.

Here c = f ′(p) is the smallest c such that (1.1) holds. We will call it the multiplier or the

dilatation coefficient and we will distinguish the hyperbolic (c < 1) and parabolic (c = 1) cases.

In the hyperbolic case, Valiron [22] showed that there is an analytic map ψ : D → H

(where H is the right half-plane) with some regularity properties, which solves the Schröder

equation:

ψ ◦ f =
1

c
ψ,(1.2)

and so ψ conjugates f to multiplication in H.

In the parabolic case, f can be conjugated to a shift in a half-plane or in the whole plane,

as proved by Pommerenke [20], and Baker and Pommerenke [2].

If the Denjoy-Wolff point p is in D, the function f is said to be elliptic and the multiplier

c = f ′(p) satisfies |c| < 1, unless f is an elliptic automorphism. Conjugations for such maps

were found by Koenigs [14] and Böttcher [4].

Conjugation to a linear-fractional transformation in all cases simultaneously was shown

by Cowen in [9].

The question of uniqueness of the intertwining map has also been explored and answered;

in the elliptic case in [14], in the hyperbolic case by Bracci and Poggi-Corradini in [7], in the

parabolic case by Poggi-Corradini in [19] and by Contreras, Dı́az-Madrigal and Pommerenke

in [8].

1.1.2. Backward iteration.

Definition 1.2. We will call a sequence of points {zn}∞n=0 a backward-iteration sequence for

f if f(zn+1) = zn for n = 0, 1, 2, . . . .
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In general, such sequences may not exist. Note that in the backward iteration case the

sequence d(zn, zn+1) is increasing, so we will impose an upper bound on the pseudo-hyperbolic

step:

d(zn, zn+1) ≤ a, ∀n,(1.3)

for some fixed a < 1.

This condition is nontrivial, for an example of a map that admits a backward-iteration

sequence with unbounded steps, see section 2 of [18].

A backward-iteration sequence satisfying (1.3) must converge to a point on the boundary

of D:

Theorem 1.3 (Poggi-Corradini, [16]). Suppose f is an analytic map with f(D) ⊆ D (and not

an elliptic automorphism). Let {zn}∞n=0 be a backward-iteration sequence for f with bounded

pseudo-hyperbolic steps dn = d(zn, zn+1) ↑ a < 1. Then the following hold:

(1) There is a point q ∈ ∂D such that zn → q as n tends to infinity, and q is a fixed point

for f with a well-defined multiplier f ′(q) = α <∞.

(2) When q 6= p, where p is the Denjoy-Wolff point, then α > 1, so we can call q a

boundary repelling fixed point. If q = p, then f is necessarily of parabolic type.

(3) When q 6= p, then the sequence zn tends to q along a non-tangential direction.

(4) When q = p, then zn tends to q tangentially.

In this case Julia’s lemma holds for the point q with multiplier α > 1:

∀R > 0 f (H(q, R)) ⊆ H(q, αR),(1.4)

where α is the smallest number such that this holds.

For backward iteration, the following conjugation result was obtained in [17]:

Theorem 1.4 (Poggi-Corradini). Suppose f is an analytic self-map of the unit disc D and 1

is a boundary repelling fixed point for f with multiplier 1 < α <∞. Let a = (α− 1)/(α+ 1)

and η(z) = (z − a)/(1 − az). Then there is an analytic map ψ of D with ψ(D) ⊆ D, which

has non-tangential limit 1 at 1, such that

ψ ◦ η(z) = f ◦ ψ(z),(1.5)

for all z ∈ D.

1.2. Unit ball in C
N .
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1.2.1. Preliminaries. Consider the N-dimensional unit ball B
N =

{

Z ∈ C
N : ‖Z‖ < 1

}

,

where the inner product and the norm are defined as

(Z,W ) =
N
∑

j=1

ZjWj and ‖Z‖2 = (Z,Z).

Schwarz’s lemma still holds for a self-map f of the unit ball, i.e. f must be a contraction in

the Bergmann metric kBN (Corollary (2.2.18) from [1]). For simplicity of computations, we

will use the pseudo-hyperbolic metric dBN in B
N , which is related to the Bergmann metric

by

dBN (Z,W ) = tanh(kBN (Z,W )) ∀Z,W ∈ B
N .

The pseudo-hyperbolic metric satisfies dBN (Z, 0) = ‖Z‖ and is preserved by every automor-

phism of B
N , thus one can derive that

d2
BN (Z,W ) = 1 − (1 − ‖Z‖2)(1 − ‖W‖2)

|1 − (Z,W )|2
∀Z,W ∈ B

N .(1.6)

We also have the following generalization of Julia’s lemma:

Theorem 1.5 (Theorem (2.2.21) from [1]). Let f : B
N → B

N be a holomorphic map and

take X ∈ ∂B
N such that

lim inf
Z→X

1 − ‖f(Z)‖
1 − ‖Z‖ = α <∞.(1.7)

Then there exists a unique Y ∈ ∂B
N such that

∀R > 0 f (H(X,R)) ⊆ H(Y, αR),

where H(X,R) is a horosphere (the N-dimensional generalization of a horocycle), defined as

H(X,R) :=

{

Z ∈ B
N :

|1 − (Z,X)|2
1 − ‖Z‖2

< R

}

.

And a version of the Denjoy-Wolff theorem also holds:

Theorem 1.6 (Hervé [12], MacCluer [15]). Let f : B
N → B

N be a holomorphic map without

fixed points in B
N . Then the sequence of iterates {fn} converges uniformly on compact subsets

of B
N to the constant map Z 7→ p for a (unique) point p ∈ ∂B

N (called the Denjoy-Wolff

point of f); and the number

c := lim inf
Z→p

1 − ‖f(Z)‖
1 − ‖Z‖ ∈ (0, 1](1.8)

is called the multiplier or the boundary dilatation coefficient of f at p.

The map f is called hyperbolic if c < 1 and parabolic if c = 1.

Unlike in the one-dimensional case, there may be many fixed points inside the unit ball

B
N . Even if the fixed point is unique, forward iterates need not converge to it (consider
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rotations). We will call a function f unitary on a slice if there exist ζ and η in ∂B
N with

f(λζ) = λη for all λ ∈ D. Functions that are not unitary on any slice are precisely those for

which strict inequality occurs in the multidimensional Schwarz lemma and for them forward

iterates converge to the (unique) point 0 (see [10]). Note that even if function f has more

than one fixed point, the sequence of forward iterates may still converge, see [1].

Definition 1.7. We will call a self-map of the unit ball f attracting-elliptic, if it has a unique

fixed point inside B
N and it is conjugate via an automorphism to a self-map fixing zero,

which is not unitary on any slice.

In the rest of the paper we will consider only self-maps of the ball that are attracting-

elliptic, hyperbolic or parabolic.

Sometimes it will be more convenient to use the Siegel domain:

H
N :=

{

(z, w) ∈ C × C
N−1 : Re z > ‖w‖2

}

,

which is biholomorphic to B
N via the Cayley transform C : B

N → H
N :

C(z, w) =

(

1 + z

1 − z
,

w

1 − z

)

and C−1(z, w) =

(

z − 1

z + 1
,

2w

z + 1

)

.

We will use the same notations for the points in B
N and their images in H

N , when this is

not likely to cause confusion. We will also denote by (z, w) an N -dimensional vector either

in B
N or H

N with z ∈ C being the first component and w ∈ C
N−1 being the last N − 1

components. The pseudo-hyperbolic distance in H
N is defined as

d2
HN ((z, w), (z̃, w̃)) : = d2

BN (C−1(z, w), C−1(z̃, w̃))

= 1 − 4(Re z − ‖w‖2)(Re z̃ − ‖w̃‖2)

|z + ¯̃z − 2 〈w, w̃〉 |2 ∀(z, w), (z̃, w̃) ∈ H
N .(1.9)

Forward iteration in the unit ball of C
N in the hyperbolic case was studied in [5], [6] and [13].

In [6] the Schröder equation (1.2) was solved with ψ being holomorphic map ψ : B
N → H

given some additional conditions. In [13], similar result was obtained for Schur class maps.

In [5], f was conjugated to its linear part, assuming some regularity at the Denjoy-Wolff

point. Linearization results for the large class of hyperbolic and parabolic maps of B
2 were

proved in [3]. Conjugations for elliptic maps were given in [10]; and they also follow by the

classical Poincaré-Dulac theory, see [21].

1.2.2. Main results. The main goal of this paper is to study backward iterates in the unit

ball B
N . The following results are generalizations of Theorem 1.3 and Theorem 1.4 to higher

dimensions.
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Theorem 1.8. Let f be a holomorphic self-map of B
N of hyperbolic or attracting-elliptic type

with Denjoy-Wolff point p. Let {Zn} be a backward-iteration sequence for f with bounded

pseudo-hyperbolic step dBN (Zn, Zn+1) ≤ a < 1. Then:

(1) There exists a point q ∈ ∂B
N , q 6= p, such that Zn → q as n tends to infinity,

(2) {Zn} stays in a Koranyi region with vertex q,

(3) Julia’s lemma (1.4) holds for q with a finite multiplier α ≥ 1
c
, where c < 1 is a

constant that depends on f .

Remark 1.9. In the hyperbolic case, c is the multiplier at p, see (1.8).

Because of the last statement of the Theorem (1.8), the multiplier α > 1, and thus we can

introduce the following

Definition 1.10. The point q ∈ ∂B
N is called a boundary repelling fixed point (BRFP) for

f , if (1.4) holds for some α > 1.

Remark 1.11. It follows from Julia’s lemma (Theorem 1.5) that the above definition of

multiplier is equivalent to (1.7).

Remark 1.12. It follows from (1.4) that q also is a boundary fixed point with respect to

K-limits and, consequently, non-tangential limits (see the proof of Theorem (2.2.29) in [1]).

Definition 1.13. The Koranyi region K(q,M) of vertex q ∈ ∂B
N and amplitude M > 1 is

the set

K(q,M) =

{

Z ∈ B
N :

|1 − (Z, q)|
1 − ‖Z‖ < M

}

.(1.10)

Koranyi regions are natural generalizations of the Stolz regions in D and can be used to

define K-limits:

Definition 1.14. We will say that function f has K-limit λ at q ∈ ∂B
N if for any M > 1

f(Z) → λ as Z → q within K(q,M).

In one dimension this is exactly the non-tangential limit, while when N > 1 the approach

can be tangential, see [1].

Theorem 1.15. Suppose f is an analytic function of H
N with f(HN) ⊆ H

N and 0 is a

boundary repelling fixed point for f with multiplier 1 < α <∞, isolated from other boundary

repelling fixed points with multipliers less or equal to α. Consider the automorphism of H
N :

η(z, w) = (αz,
√
αw). Then there is an analytic map ψ of H

N with ψ(HN) ⊆ H
N and

ψ(z, w) = ψ(z, 0), which has restricted K-limit 0 at 0 (see Definition 3.3), such that

ψ ◦ η(Z) = f ◦ ψ(Z),(1.11)

for every Z ∈ H
N .
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It follows from the proof of Theorem 1.15 (see Lemma 3.1), that every isolated boundary

repelling fixed point is a limit of some backward-iteration sequence with bounded hyperbolic

step. Thus in the hyperbolic and attracting-elliptic cases we have the following characteriza-

tion of BRFP in terms of backward-iteration sequences: Every backward-iteration sequence

with bounded hyperbolic step converges to a BRFP; and if a BRFP is isolated, then we can

construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

The intertwining map ψ in Theorem 1.15 satisfies ψ(z, w) = ψ(z, 0) and essentially is

a map from one dimensional subspace of H
N to H

N , therefore that conjugation does not

provide information about behavior of f outside of one dimensional image of ψ. It then is

natural to identify situations in which we can find a conjugation such that the image of the

intertwining map ψ has larger dimension.

Theorem 1.16. Let f : H
N → H

N be analytic and expandable at 0 (see Definition 5.1)

and 0 be a boundary repelling fixed point with multiplier 1 < α < ∞. Assume further

that the matrix A in the definition of f is diagonal, and without loss of generality let its

eigenvalues be aj,j =
√
αeiθj for j = 1 . . . L (L is an integer, 0 ≤ L ≤ N − 1) and |aj,j|2 < α

for j = L + 1 . . . N − 1. Define Ω as a diagonal matrix with Ωj,j = eiθj for j = 1 . . . L and

Ωj,j = 1 for j = L+1 . . . N−1. Then the conjugation (1.11) holds for η(z, w) =
(

αz,Ωα1/2w
)

and intertwining map ψ such that ψ(z, w) = ψ(pL(z, w)), where pL is a projection on the

first L+ 1 dimensions.

In the last section we will provide some new examples, in particular, functions in the two-

dimensional Siegel domain that have non-isolated BRFPs, a phenomenon that never occurs

in one dimension. In Example 6.3, we will show that the quadratic function f(z, w) :=

(2z + w2, w) is of hyperbolic type with the Denjoy-Wolff point infinity and has a curve

{(r2, ir)|r ∈ R} of boundary repelling fixed points, all of them having the same multiplier

α = 2.

In Example 6.5 we will describe a non-trivial way to construct a function f of the two-

dimensional Siegel domain based on a function φ of a one-dimensional half-plane. f will

behave very similarly to φ and will inherit many properties, however, it may have non-

isolated BRFPs.

We will finish with a discussion of open questions.

2. Convergence of backward-iteration sequences

Proof of Theorem 1.8 (hyperbolic case). We will move to the Siegel domain H
N . Without

loss of generality we can assume that the Denjoy-Wolff is infinity. Also denote backward-

iteration sequence as Zn = (zn, wn) ∈ C × C
N−1 and define tn = Re zn − ‖wn‖2. The image
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of the horosphere centered at (1, 0) of radius R under the Cayley transform will be
{

(z, w) ∈ H
N :

|1 − (C−1(z, w), (1, 0))|2

1 − ‖C−1(z, w)‖2 < R

}

,







(z, w) ∈ H
N :

∣

∣1 − z−1
z+1

∣

∣

2

1 −
∣

∣

z−1
z+1

∣

∣

2 − ‖2w‖2

|z+1|2
< R







,

and after some computations,
{

(z, w) ∈ H
N : Re z − ‖w‖2 >

1

R

}

,

i.e. any horosphere centered at the Denjoy-Wolff point ∞ will have form

H(t) =
{

(z, w) ∈ H
N | Re z − ‖w‖2 > t

}

,

for some t > 0, and the Siegel domain version of the multi-dimensional Julia’s lemma (The-

orem 1.5) at infinity will be

∀R > 0 f

(

H

(

1

R

))

⊂ H

(

1

cR

)

or

∀t > 0 f (H(ct)) ⊂ H(t).(2.1)

Since f(Zn+1) = Zn /∈ H(tn), by (2.1) Zn+1 /∈ H(ctn), and, by induction, Zn+k /∈ H(cktn),

k = 1, 2, . . .. Thus we have

Re zn+k − ‖wn+k‖2 = tn+k ≤ cktn, k = 1, 2, . . .(2.2)

Since the dilatation coefficient at the Denjoy-Wolff point c < 1, the sequence Zn must

tend to the boundary of the Siegel domain as n tends to infinity. All we need to show now

is that the limiting set on the boundary is just one point.

Define a Euclidean projection on the boundary of the Siegel domain as

pr(z, w) := (i Im z + ‖w‖2, w).

It will be enough to show that pr(Zn) has a limit.

Lemma 2.1. The Euclidean distance between projections of consecutive points of the backward-

iteration sequence is bounded by

‖pr(Zn) − pr(Zn+1)‖ ≤ C̃
√
tn,

for some positive constant C̃ independent of n.
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Assuming lemma and using (2.2), we have

‖pr(Zn) − pr(Zn+k)‖ ≤
k−1
∑

j=0

‖pr(Zn+j) − pr(Zn+j+1)‖ ≤ C̃
k−1
∑

j=0

√

tn+j ≤ C̃
k−1
∑

j=0

√

cjtn

≤ C̃
√
tn

∞
∑

j=0

√
cj =

C̃
√
tn

1 −√
c
−−−→
n→∞

0.(2.3)

Thus {pr(Zn)} is a Cauchy sequence and must have a limit q ∈ ∂H
N , which is also the limit

for {Zn}. Since q is within finite Euclidean distance from pr(Z1), it is finite and cannot

coincide with the Denjoy-Wolff point infinity.

Proof of Lemma 2.1. Consider the images of Zn and Zn+1 under the automorphism in H
N

defined by

hn(z, w) := (z − i Im zn + ‖wn‖2 − 2 〈w,wn〉 , w − wn),

which maps Zn to (tn, 0). Denote hn(Zn+1) = Z̃n = (z̃n, w̃n) = (x̃n + iỹn, w̃n). hn are called

translations and they do not change the horoshperes centered at infinity H(t). We check

this for the reader’s sake:

Re(z− i Im zn + ‖wn‖2 − 2 〈w,wn〉)−‖w−wn‖2 = Re z+ ‖wn‖2 − 2 Re 〈w,wn〉 − ‖w−wn‖2

= Re z + ‖wn‖2 − 2 Re 〈w,wn〉 − ‖w‖2 + 2 Re 〈w,wn〉 − ‖wn‖2 = Re z − ‖w‖2.

The point (z̃n, w̃n) must satisfy two conditions (see Figure 2). First, dHN (Zn, Zn+1) ≤ a,

which will take form
∣

∣

∣

∣

z̃n − tn
z̃n + tn

∣

∣

∣

∣

2

+
4tn‖w̃n‖2

|z̃n + tn|2
≤ a2.(2.4)

Second, by Julia’s lemma (2.1)

tn+1 = Re z̃n − ‖w̃n‖2 ≤ ctn.(2.5)

Using (2.4) and (2.5) we obtain

|z̃n − tn|2 + 4tn Re z̃n ≤ a2|z̃n + tn|2 − 4tn‖w̃n‖2 + 4tn(ctn + ‖w̃n‖2),

|z̃n − tn|2 + 4tn Re z̃n ≤ a2|z̃n + tn|2 + 4ct2n,

|z̃n + tn|2 ≤ a2|z̃n + tn|2 + 4ct2n,

|z̃n + tn|2 ≤
4ct2n

1 − a2
,

|x̃n + tn|2 + |ỹn|2 ≤
4ct2n

1 − a2
.
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Figure 2. The restriction on the point Z̃n = hn(Zn+1) and its projection on
the boundary of the Siegel domain. The shaded area represents the intersection
of the solutions of (2.4) and (2.5).

Thus

x̃n ≤ 2tn
√
c√

1 − a2
− tn = C1tn,(2.6)

|ỹn| ≤
2tn

√
c√

1 − a2
= C2tn,(2.7)

‖w̃n‖2 < x̃n ≤ C1tn,(2.8)

with C1 and C2 independent of n. Note that we must have dHN (ctn, tn) ≤ dHN (Z̃n, (tn, 0)) ≤
a, otherwise the backward-iteration sequence will not exist. It follows that 4c > 1 − a2 and

C1 > 0.

Now

pr(Zn) = (i Im zn + ‖wn‖2, wn)

and

pr(Zn+1) = pr(h−1
n (z̃n, w̃n)) =

(

i Im(z̃n + zn) + 2 Im 〈w̃n, wn〉 + ‖w̃n + wn‖2, w̃n + wn

)

.

pr(Zn+1) − pr(Zn) =
(

i Im z̃n + 2 Im 〈w̃n, wn〉 + ‖w̃n + wn‖2 − ‖wn‖2, w̃n

)

=
(

i Im z̃n + 2 〈w̃n, wn〉 + ‖w̃n‖2, w̃n

)

.(2.9)

‖pr(Zn+1) − pr(Zn)‖2 =
∣

∣i Im z̃n + 2 〈w̃n, wn〉 + ‖w̃n‖2
∣

∣

2
+ ‖w̃n‖2

≤
(

|ỹn| + 2‖w̃n‖‖wn‖ + ‖w̃n‖2
)2

+ ‖w̃n‖2 ≤ (C2tn + 2C1tn‖wn‖ + C1tn)2 + C1tn ≤ C̃2tn,

using (2.7), (2.8) and the facts that tn → 0 and assuming that ‖wn‖ is bounded.
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Thus it is enough to show now is that ‖wn‖ ≤ C3. Note that wn+1 = wn + w̃n ∀n and thus

‖wn‖ ≤ ‖w̃n−1‖ + ‖w̃n−2‖ + . . .+ ‖w̃0‖ + ‖w0‖

≤
√

C1

(

√

tn−1 +
√

tn−2 + . . .+
√
t0

)

+ ‖w0‖

≤
√

C1

√
t0

(√
cn−1 +

√
cn−2 + . . .+ 1

)

+ ‖w0‖ ≤
√
C1

√
t0

1 −√
c

+ ‖w0‖ =: C3.

�

Now we want to show that {Zn} stays in the Koranyi region with vertex q. Without loss

of generality, take q = 0. A Koranyi region with vertex 0 in H
N must be the image under

the Cayley transform of a Koranyi region with vertex (−1, 0) in B
N , i.e. the set

{

(z, w) ∈ H
N :

|1 − (C−1(z, w), (−1, 0))|
1 − ‖C−1(z, w)‖ < M

}

.

Since 1 < 1 + ‖C−1(z, w)‖ < 2, it is enough to show that

|1 − (C−1(z, w), (−1, 0))|
1 − ‖C−1(z, w)‖2

<
M

2
.

The left-hand side is
∣

∣1 + z−1
z+1

∣

∣

1 −
∣

∣

z−1
z+1

∣

∣

2 − 4‖w‖2

|z+1|2
=

|z + 1 + z − 1||z + 1|
|z + 1|2 − |z − 1|2 − 4‖w‖2

=
2|z||z + 1|

4 Re z − 4‖w‖2
,

thus for Zn = (zn, wn) ∈ H
N we need

|zn||zn + 1|
(Re zn − ‖wn‖2)

< M.

Since |zn + 1| > 1 and bounded near 0, and Re zn − ‖wn‖2 = tn, it is sufficient to show that

|zn| ≤ Ctn for some constant C independent of n. Using Lemma 2.1, similarly to (2.3) we

have

‖pr(Zn)‖ (= ‖pr(Zn) − q‖) = lim
k→∞

‖pr(Zn) − pr(Zn+k)‖ ≤
∞
∑

j=0

‖pr(Zn+j) − pr(Zn+j+1)‖

≤ C̃

∞
∑

j=0

√

tn+j ≤
C̃
√
tn

1 −√
c
,

so ‖pr(Zn)‖2 = |Im zn + ‖wn‖2|2 + ‖wn‖2 ≤ ( C̃
1−√

c
)2tn = C4tn. It follows that ‖wn‖2 ≤ C4tn.

If there is a bound
∣

∣Im zn + ‖wn‖2
∣

∣ = |zn − tn| ≤ C5tn,(2.10)

then

|zn| ≤ |zn − tn| + tn ≤ (C5 + 1)tn,

and Zn must stay in the Koranyi region. It is enough to show (2.10).
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Denote pr1(Zn) = Im zn + ‖wn‖2, which is the first component of pr(Zn). As in (2.9)

pr1(Zn+1) − pr1(Zn) = iỹn + ‖w̃n‖2 + 2 〈w̃n, wn〉

and thus

|pr1(Zn+1) − pr1(Zn)| ≤ |ỹn| + ‖w̃n‖2 + 2‖w̃n‖‖wn‖
≤ C2tn + C1tn + 2

√

C1tn
√

C4tn = C6tn.

|pr1(Zn) − 0| = lim
k→∞

|pr1(Zn) − pr1(Zn+k)| ≤
∞
∑

k=0

|pr1(Zn+k) − pr1(Zn+k+1)|

≤ C6

∞
∑

k=0

tn+k ≤ C6

∞
∑

k=0

cktn ≤ C5tn,

which proves (2.10).

Now we will show that Julia’s lemma (Theorem 1.5) is applicable to the point q. Once

again, assume that q = (−1, 0) in B
N or q = 0 in H

N .

lim inf
Z→(−1,0)

1 − ‖f(Z)‖
1 − ‖Z‖ ≤ lim inf

n→∞

1 − ‖Zn‖2

1 − ‖Zn+1‖2 .

The latter liminf in H
N will take form

lim inf
n→∞

Re zn − ‖wn‖2

Re zn+1 − ‖wn+1‖2

|zn+1 + 1|2
|zn + 1|2 = lim inf

n→∞

tn
tn+1

.

It is enough to show that tn+1 ≥ Ktn for some constant K. Since d(Zn, Zn+1) ≤ a, H(tn+1)

must intersect the pseudo-hyperbolic sphere (2.4), and thus

tn − tn+1

tn + tn+1

≤ a,

and it follows that

tn+1 ≥
1 − a

1 + a
tn,

so Julia’s lemma (1.4) holds with finite multiplier

α ≤ 1 + a

1 − a
.(2.11)

Remark 2.2. As the referee pointed out, there is another way to show that q is a BRFP with

finite multiplier α ≤ 1+a
1−a

: the boundary dilatation coefficient α at q ∈ B
N can be written as

1

2
logα = lim inf

Z→q
[kBN (0, Z) − kBN (0, f(Z))] ≤ lim inf

n→∞
[kBN (0, Zn+1) − kBN (0, Zn)] ,

and

[kBN (0, Zn+1) − kBN (0, Zn)] ≤ kBN (Zn, Zn+1) ≤ a′,

where a′ = 1
2
log 1+a

1−a
, and (2.11) follows.
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Now we will show that there is also a lower bound on α:

α ≥ 1

c
,(2.12)

where c < 1.

Consider the image of 0 in B
N and denote f(0) = (z0, w0). Since 0 ∈ ∂H((1, 0), 1) (here

H((1, 0), 1) is a horosphere centered at the Denjoy-Wolff point (1, 0) of radius 1), by Julia’s

lemma applied to (1, 0), f(0) ∈ H((1, 0), c), where c < 1. This horosphere is a Euclidean

ellipsoid, centered at ( 1
1+c

, 0), whose restriction to the 1-dimensional subspace, generated by

e1 = (1, 0) is a disk of radius c
1+c

(see [1], (2.2.22)). Thus

Re z0 ≥
1 − c

1 + c
.

In a similar way, by Julia’s lemma applied to q = (−1, 0), f(0) ∈ H((−1, 0), α) and

Re z0 ≤
α− 1

α+ 1
,

so we have
α− 1

α+ 1
≥ 1 − c

1 + c
,

which is equivalent to cα ≥ 1 and (2.12) follows. �

Proof of Theorem 1.8 (attracting-elliptic case). Without loss of generality assume 0 is the

Denjoy-Wolff point. We will need the following result on the growth of function f near the

boundary of the ball:

Lemma 2.3. Let f be a self-map of the unit ball B
N fixing zero, not unitary on any slice.

Fix r0 > 0, define M(r) := max ‖f(rBN)‖, r ∈ [r0, 1). Then there exists c = c(r0) < 1 such

that

1 − r

1 −M(r)
≤ c ∀r ∈ [r0, 1)(2.13)

Proof. Assume the opposite: ∀c < 1 ∃z = z(c) with ‖z‖ ≥ r0 such that

1 − ‖z‖
1 − ‖f(z)‖ > c

Construct the sequence zn := z(n−1
n

). Let z0 be a partial limit of {zn}. If z0 ∈ B
N , then

f(z0) ∈ B
N and

1 − ‖z0‖
1 − ‖f(z0)‖

≥ 1 ⇔ 1 − ‖z0‖ ≥ 1 − ‖f(z0)‖ ⇔ ‖f(z0)‖ ≥ ‖z0‖,

which is a contradiction, since ‖z0‖ ≥ r0 > 0 by construction. Thus z0 ∈ ∂B
N and we pick

a subsequence znk
→ z0. Then

lim sup
k→∞

1 − ‖znk
‖

1 − ‖f(znk
)‖ ≥ 1 ⇔ lim inf

k→∞

1 − ‖f(znk
)‖

1 − ‖znk
‖ ≤ 1
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Applying Julia’s lemma to the point z0 ∈ ∂B
N , we obtain that ∃w0 ∈ ∂B

N such that ∀R > 0

f(H(z0, R)) ⊆ H(w0, R), where H(z,R) is a horosphere centered at z of radius R.

Pick R small enough such that 0 6∈ H(z0, R). Let ξ be a point in H(z0, R), closest to

the origin. Since f(ξ) ∈ H(w0, R), we have ‖f(ξ)‖ ≥ ‖ξ‖ (the horospheres have the same

radius). Contradiction. �

Denote the distance to the boundary tn := 1 − ‖Zn‖. By Lemma (2.3) we have

tn+k ≤ cktn ∀n, k ≥ 0,(2.14)

where c := c(‖Z0‖) as in Lemma (2.3).

Thus tn ≤ cnt0 → 0 as n tends to infinity and the sequence {Zn}∞n=0 must tend to the

boundary of the ball. Now denote φn the angle between Zn and Zn+1 seen from the origin

(which is also the arc-length between radial projections of Zn and Zn+1 on the boundary of

the ball - see Figure 3).

Figure 3. Two consecutive points Zn and Zn+1 and their radial projections
on the boundary of the ball.

Because dBN (Zn, Zn+1) ≤ a, Zn+1 must be inside of the pseudo-hyperbolic ball of radius a

centered at Zn, which is the Euclidean ellipsoid centered at 1−a2

1−a2‖Zn‖2Zn and largest semiaxis

a
√

1−‖Zn‖2

1−a2‖Zn‖2 , so as Zn tends to the boundary,

φn ≤ C1(1 − ‖Zn‖)1/2 = C1

√
tn.(2.15)

Then the arc-length between Zn

‖Zn‖ and Zn+k

‖Zn+k‖ does not exceed

k
∑

j=0

φn+j ≤ C1

k
∑

j=0

√

tn+j ≤ C1

√
tn

k
∑

j=0

ck/2 ≤ C1
1

1 −√
c

√
tn,
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which tends to 0 when n tends to infinity, so the sequence of projections must converge to

some point on the boundary, denote it q. Thus the sequence Zn must tend to q.

The next step is to show that Zn stays in a Koranyi region centered at q. Without loss of

generality assume q = (1, 0) and denote Zn = (zn, wn) ∈ C × C
N−1. We need to show that

|1 − zn|
1 − ‖Zn‖

< M(2.16)

for some M > 1. By (2.14) and (2.15), The arc-length between (1, 0) and the projection of

Zn on the boundary is bounded by

∞
∑

j=n

φj ≤ C1

∞
∑

j=n

√

tj ≤ C2

√
tn.(2.17)

Let θn be the angle between Zn and zn (i.e. the angle between Zn and the plane spanned by

(1, 0)). By (2.17), θn ≤ C2

√
tn. Then

1− |zn| = 1−‖Zn‖ cos θn = 1− cos θn + cos θn −‖Zn‖ cos θn ≤ 1− cos θn + 1−‖Zn‖ ≤ C3tn,

since 1 − cos θn = θ2
n

2
+ o(θ3

n) as n→ ∞.

Since dD(zn, zn+1) ≤ dBN (Zn, Zn+1) ≤ a and the pseudo-hyperbolic disk centered at zn of

radius a is a Euclidean disk with center w = 1−a2

1−a2|zn|2 zn and radius r = 1−|zn|2
1−a2|zn|2a,

|Arg zn − Arg zn+1| ≈ sin |Arg zn − Arg zn+1| ≤
r

|w| =
a

|zn|
1 − |zn|2
1 − a2

≤ C4tn

Now

|Arg zn| = |Arg zn − Arg 1| ≤
∞
∑

k=n

|Arg zk − Arg zk+1| ≤
∞
∑

k=n

C4tk ≤ C5tn

and

|1 − zn|2 = (Im zn)2 + (1 − Re zn)2 = |zn|2 sin2 Arg zn + (1 − |zn| cos Arg zn)2 ≤

sin2 Arg zn + (1 − cos Arg zn + 1 − |zn|)2 ≤ C6t
2
n,

and (2.16) follows.

For Julia’s lemma to hold we need to prove that

lim inf
Z→(1,0)

1 − f(‖Z‖)
1 − ‖Z‖ <∞.

Since {Zn}∞n=0 is a backward-iteration sequence tending to (1, 0),

lim inf
Z→(1,0)

1 − f(‖Z‖)
1 − ‖Z‖ ≤ lim inf

n→∞

1 − ‖Zn‖
1 − ‖Zn+1‖

,

and it is enough to show that the latter liminf is finite. Note that Zn+1 must be in the

(Euclidean) ellipsoid centered at 1−a2

1−a2‖Zn‖2Zn with radius r = 1−|Zn|2
1−a2|Zn|2a in the subspace
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generated by Zn, and R = a
√

1−‖Zn‖2

1−a2‖Zn‖2 in the dimensions orthogonal to Zn. Thus the point

W , closest to the boundary, must have norm

‖W‖ =
1 − a2

1 − a2‖Zn‖2
‖Zn‖ +

1 − ‖Zn‖2

1 − a2‖Zn‖2
a =

(‖Zn‖ + a)(1 − a‖Zn‖)
1 − a2‖Zn‖2

=
‖Zn‖ + a

1 + a‖Zn‖
and

1 − ‖Zn+1‖ ≥ 1 − ‖W‖ = 1 − ‖Zn‖ + a

1 + a‖Zn‖
=

(1 − a)(1 − ‖Zn‖)
1 + a‖Zn‖

.

Thus
1 − ‖Zn‖

1 − ‖Zn+1‖
≤ 1 + a‖Zn‖

1 − a
≤ 1 + a

1 − a
,

and Julia’s lemma holds with multiplier α ≤ 1+a
1−a

. The lower bound on the multiplier

α ≥ 1
c

is the direct consequence of the Lemma (2.3).

Note that the above results will hold for c = c(‖Zn‖) ∀n ≥ 0, and since ‖Zn‖ → 1, for

c := lim
r0→1

c(r0).

�

3. Construction of special backward-iteration sequence

It was shown in the previous section that any backward-iteration sequence with bounded

hyperbolic step tend to a BRFP. Now we will show that any isolated BRFP is a limit of

a special backward-iteration sequence. This special backward-iteration sequence will be a

cornerstone in the construction of conjugation near BRFP.

We will follow the idea, similar to that in one-dimensional case outlined in [17]. Note that

in one dimension BRFPs with multipliers bounded by the same constant have to be isolated,

as it follows from theorem of Cowen and Pommerenke [11]. Here we will have to impose this

as a hypothesis, since not all BRFPs are isolated in higher dimensions (see Example 6.3).

Lemma 3.1. Let f be an analytic self-map of B
N and (1, 0) be a BRFP for f with multiplier

1 < α < ∞, isolated from the other BRFP’s with multipliers less than or equal to α. Then

there exists a backward-iteration sequence {Zn}∞n=0 tending to (1, 0) such that

d(Zn, Zn+1) ≤ a =
α− 1

α+ 1
.

In this and the following sections we will need a geometric notion slightly different from

Koranyi regions:

Definition 3.2. For X ∈ ∂B
N , a curve σ : [0, 1) → B

N such that σ(t) → X as t → 1 is

called special if

lim
t→1

‖σ(t) − σX(t)‖2

1 − ‖σX(t)‖2
= 0,(3.1)
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and restricted if it is special and its orthogonal projection σX := (σ,X)X is non-tangential.

Definition 3.3. We will say that f : B
N → B

N has restricted K-limit Y at X ∈ ∂B
N if

f(σ(t)) → Y as t→ 1 for any restricted curve σ.

Remark 3.4. Restricted K-limit is a weaker notion than K-limit: a function having K-limit

has restricted K-limit, and a function having restricted K-limit has non-tangential limit, see

[1].

We will need the following result on the behavior of the radial and tangential components

of f near the BRFP (1, 0):

Lemma 3.5. Let f : B
N → B

N be analytic and (1, 0) be a fixed point for f with multiplier α

(in the sense of Julia’s lemma). Then the following functions are bounded in every Koranyi

region:

(1)
1 − π1(f(Z))

1 − π1(Z)
,

(2)
f(Z) − π1(f(Z))(1, 0)

|1 − π1(Z)|1/2
,

where π1(Z) = (Z, (1, 0)). Moreover, the function (1) has restricted K-limit α at (1, 0), and

the function (2) has restricted K-limit 0 at (1, 0).

Proof. Apply theorem 2.2.29 (i) and (ii) from [1] to the boundary fixed point (1, 0). �

Proof of Lemma 3.1. Let D be a small enough (Euclidean) closed ball centered at (1, 0)

that does not contain the Denjoy-Wolff point of f or any other BRFP of f . Let ak =

(αk − 1)/(αk + 1) and

H(ak) =

{

Z ∈ B
N :

|1 − (Z, e1)|2
1 − ‖Z‖2

≤ (1 − ak)
2

1 − a2
k

= α−k

}

,

i.e. a horosphere whose intersection with the 1-dimensional subspace generated by e1 =

(1, 0) is a disk with diameter [(ak, 0), (1, 0)]. Let n0 be the smallest integer such thatH(an0
) ⊆

D and rk = an0+k. (We will identify rk with (rk, 0) ∈ B
N , that will cause no confusion). Also

let Hk = H(rk), J = ∂D ∩ B
N and γn be the line segment connecting rk and f(rk).

For each k, the sequence {fn(rk)}n converges to the Denjoy-Wolff point of f , hence eventu-

ally leaves D. So there exists a smallest integer nk such that fnk
(γk) intersects J . By Julia’s

lemma (Theorem 1.5), f(Hk+1) ⊆ Hk, so fj(γk) cannot intersect J for j = 1, 2, . . . k− 1 and

thus nk ≥ k.

Claim. d(rk, f(rk)) −−−→
k→∞

a.
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By Lemma 3.5,

lim
k→∞

1 − π1(f(rk))

1 − rk

= α,

and by the definition of multiplier

lim inf
k→∞

1 − ‖f(rk)‖
1 − rk

≥ α.(3.2)

By (1.6), the pseudo-hyperbolic distance d in B
N must satisfy the relation:

1 − d2(rk, f(rk)) =
(1 − r2

k)(1 − ‖f(rk)‖2)

|1 − rkπ1(f(rk))|2
=

(1 + rk)(1 + ‖f(rk)‖)
1 − ‖f(rk)‖

1 − rk
∣

∣

∣

∣

1 − rkπ1(f(rk))

1 − rk

∣

∣

∣

∣

2 .

Now

1 − rkπ1(f(rk))

1 − rk

=
1 − rk + rk − rkπ1(f(rk))

1 − rk

= 1 + rk
1 − π1(f(rk))

1 − rk

−→ 1 + α,

and so

lim inf
k→∞

(

1 − d2(rk, f(rk))
)

≥ 4A

(1 + α)2

or

lim sup
k→∞

d(rk, f(rk)) ≤
α− 1

α+ 1
= a.

We will need the following inequality for dk := d(rk, f(rk)):

1 − ‖f(rk)‖
1 − rk

≤ 1 + dk

1 − rkdk

.(3.3)

In fact, this is a partial case of more general inequality:

Claim 3.6. For all Z,W ∈ B
N and d := dBN (Z,W )

1 − ||W‖
1 − ‖Z‖ ≤ 1 + d

1 − d‖Z‖
Proof. Let ∆ be a closed hyperbolic ball centered at Z of (pseudo-hyperbolic) radius d =

dBN (Z,W ). This is a Euclidean ellipsoid, centered at
1 − d2

1 − d2‖Z‖2
Z and a disk of radius

1 − ‖Z‖2

1 − d2‖Z‖2
d, when restricted to the subspace generated by Z. Thus the point, which is

closest to the origin must be in the subspace generated by Z, and has modulus

1 − d2

1 − d2‖Z‖2
‖Z‖ − 1 − ‖Z‖2

1 − d2‖Z‖2
d =

(‖Z‖ − d)(1 + d‖Z‖)
1 − d2‖Z‖2

=
‖Z‖ − d

1 − d‖Z‖ .

Since W ∈ ∆,

1 − ‖W‖ ≤ 1 − ‖Z‖ − d

1 − d‖Z‖ =
1 + d

1 − d‖Z‖(1 − ‖Z‖),

1 − ‖W‖
1 − ‖Z‖ ≤ 1 + d

1 − d‖Z‖ .

�
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By taking limsup of both sides of (3.3),

lim sup
k→∞

1 − ‖f(rk)‖
1 − rk

≤ 1 + a

1 − a
= α,

so this with (3.2) shows that lim
k→∞

1 − ‖f(rk)‖
1 − rk

= α and lim
k→∞

d(rk, f(rk)) = a.

The final steps in the construction are exactly the same as in proof of lemma 1.4 in [17]. �

Lemma 3.7. If {Zn}∞n=1 is backward-iteration sequence, which tends to e1 = (1, 0) (BRFP

with multiplier α > 1) and d(Zn, Zn+1) ≤ a = α−1
α+1

, then its image in the Siegel domain must

satisfy the following properties:

lim
n→∞

Re zn

tn
= 1,(3.4)

lim
n→∞

Im zn

tn
= 0,(3.5)

lim
n→∞

‖wn‖2

tn
= 0,(3.6)

lim
n→∞

tn
tn+1

= α,(3.7)

where tn := Re zn − ‖wn‖2. In particular, the sequence {Zn} is special, i.e.

lim
n→∞

‖Zn − (Zn, e1)e1‖2

1 − ‖(Zn, e1)‖2
= 0.

Proof. By definition of multiplier

lim inf
n→∞

1 − ‖Zn‖
1 − ‖Zn+1‖

≥ α =
1 + a

1 − a
.

Applying Claim 3.6 to Zn, Zn+1 and rn = d(Zn, Zn+1), we have

1 − ‖Zn‖
1 − ‖Zn+1‖

≤ 1 + rn

1 − rn‖Zn+1‖
≤ 1 + a

1 − a‖Zn+1‖
.

Taking lim sup of both sides,
1 − ‖Zn‖

1 − ‖Zn+1‖
→ α

or, in Siegel domain,
tn
tn+1

→ α,

so (3.7) is proved. Here we are going to use slightly different version of Cayley transform:

C−1(z, w) :=

(

1 − z

1 + z
,

2w

1 + z

)

,

so that BRFP (1, 0) will be mapped to C(1, 0) = (0, 0).

Consider the images of two consecutive points Zn and Zn+1 under the automorphism hn :

(z, w) := (z−i Im zn+‖wn‖2−2(w,wn), w−wn), s.t. hn(Zn) = (tn, 0) and denote (z̃n, w̃n) :=
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hn(Zn+1). hn does not change the pseudo-hyperbolic distance in H
N , so d ((tn, 0), (z̃n, w̃n)) =

d(Zn, Zn+1) ≤ a, which is

‖z̃n − tn‖2 + 4tn‖w̃n‖2 ≤ a2‖z̃n + tn‖2,

‖z̃n − tn‖2 + 4tn(Re z̃n − tn+1) ≤ a2‖z̃n + tn‖2,

(1 − a2)‖z̃n + tn‖2 ≤ 4tntn+1,
∣

∣

∣

∣

z̃n

tn
+ 1

∣

∣

∣

∣

2

≤ 4tn+1

tn(1 − a2)
.

Taking limsup of both sides and using (3.7),

lim sup
n→∞

∣

∣

∣

∣

z̃n

tn
+ 1

∣

∣

∣

∣

2

= lim sup
n→∞

(

∣

∣

∣

∣

Re z̃n

tn
+ 1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

Im z̃n

tn

∣

∣

∣

∣

2
)

≤
(

1 +
1

α

)2

.

Since Re z̃n = tn+1 + ‖w̃n‖2 ≥ tn+1,

lim sup
n→∞

(

∣

∣

∣

∣

tn+1

tn
+ 1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

Im z̃n

tn

∣

∣

∣

∣

2
)

≤
(

1 +
1

α

)2

,

(

1

α
+ 1

)2

+ lim sup
n→∞

∣

∣

∣

∣

Im z̃n

tn

∣

∣

∣

∣

2

≤
(

1 +
1

α

)2

.

So,

Im z̃n

tn
→ 0,(3.8)

which implies

Re z̃n

tn
→ 1

α
(3.9)

and

‖w̃n‖2

tn
=

Re z̃n

tn
− tn+1

tn
→ 0.(3.10)

Now wn+1 = wn + w̃n, wn+k = wn +
k−1
∑

j=0

w̃n+j ∀k ≥ 1.

‖wn+k‖ ≥ ‖wn‖ −
k−1
∑

j=0

‖w̃n+j‖,

0 ≥ ‖wn‖ −
∞
∑

j=0

‖w̃n+j‖,

‖wn‖ ≤
∞
∑

j=0

‖w̃n+j‖.

Since tn
tn+1

→ α > 1, pick ε such that α − ε > 1, then for large enough n tn+1 ≤ tn
α−ε

and

tn+j ≤ tn
(α−ε)j .

Now by (3.10), ∀δ > 0 ∃N = N(δ) s.t. ‖w̃n‖ ≤ δ
√
tn for n ≥ N
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‖wn‖ ≤
∞
∑

j=0

δ
√

tn+j ≤ δ

∞
∑

j=0

√
tn

(α− ε)j/2
= δS

√
tn,

where S is finite sum. So
‖wn‖2

tn
→ 0

and
Re zn

tn
=
tn + ‖wn‖2

tn
→ 1.

Similarly, because Im zn+1 = Im zn + Im z̃n + 2 Im 〈w̃n, wn〉, |2 Im 〈w̃n, wn〉| ≤ 2‖w̃n‖‖wn‖
and using (3.8), (3.10) and (3.6),

Im zn

tn
→ 0.

The condition (3.1) for (zn, wn) → (1, 0) being special in B
N is

lim
n→∞

‖wn‖2

1 − |zn|2
= 0

or, in H
N

lim
n→∞

4‖wn‖2

|1+zn|2

1 −
∣

∣

∣

1−zn

1+zn

∣

∣

∣

2 = lim
n→∞

‖wn‖2

Re zn

= 0.

But

lim
n→∞

‖wn‖2

Re zn

= lim
n→∞

‖wn‖2

tn
Re zn

tn

= 0.

�

4. Conjugation at boundary repelling fixed point

The aim of this section is to solve equation (1.11) in B
N , where η is an automorphism

of B
N with the same dilatation coefficient at BRFP as f and ψ : B

N → B
N is an analytic

map with some regularity at BRFP. As in [17], the conjugating map will be obtained via

the sequence of iterates fn composed with appropriate automorphisms of B
N . It will be

convenient to build almost the entire construction in H
N with BRFP 0.

We will start with several technical statements.

Using the backward-iteration sequence (zn, wn) → 0 as in Lemma 3.7 with tn = Re zn −
‖wn‖2, define a sequence of automorphisms τn of H

N as τn := h−1
n ◦ δ−1

n , where

hn(z, w) = (z + ‖wn‖2 − iyn − 2 〈w,wn〉 , w − wn),

h−1
n (z, w) = (z + ‖wn‖2 + iyn + 2 〈w,wn〉 , w + wn),

δn(z, w) = (
z

tn
,
w√
tn

),
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δ−1
n (z, w) = (tnz,

√
tnw).

Then τn(1, 0) = (zn, wn).

Lemma 4.1. Let ηk(z, w) := (αkz, αk/2w) and τn be defined as above. Then

(1) τ−1
n+k ◦ τn → ηk, uniformly on compact subsets of H

N , as n tends to infinity,

(2) τ−1
n+1◦η−1◦τn(z, w) → (z, w), uniformly on compact sets of H

N , as n tends to infinity.

Proof. Using definition of τn and properties (3.4), (3.5), (3.6) and (3.7),

τ−1
n+k ◦ τn(z, w) = δn+k ◦ hn+k ◦ h−1

n ◦ δ−1
n (z, w) =

(

tn
tn+k

z +
‖wn‖2

tn+k

+ i
yn

tn+k

+ 2

√
tn

tn+k

〈w,wn〉 +
‖wn+k‖2

tn+k

− i
yn+k

tn+k

− 2

tn+k

〈√
tnw + wn, wn+k

〉

,

√
tnw + wn − wn+k√

tn+k

)

−−−→
n→∞

(

αkz, αk/2w
)

= ηk(z, w).

τ−1
n+1 ◦ η−1 ◦ τn(z, w) = δn+1 ◦ hn+1 ◦ η−1 ◦ h−1

n ◦ δ−1
n (z, w) =

(

tn
tn+1α

z +
‖wn‖2

tn+1α
+ i

yn

tn+1α
+ 2

√
tn

tn+1α
〈w,wn〉 +

‖wn+1‖2

tn+1

− i
yn+1

tn+1

− 2

tn+1

〈√
tnw + wn, wn+1

〉

,

√
tnw + wn√
tn+1

√
α

− wn+1√
tn+1

)

−−−→
n→∞

(z, w) .

�

Claim 4.2. τn(z, w) −−−→
n→∞

0 and stays in a Koranyi region uniformly on compact sets of

H
N .

Proof.

τn(z, w) =
(

tnz + ‖wn‖2 + iyn + 2
〈√

tnw,wn

〉

,
√
tnw + wn

)

.

Condition for (z, w) being in a Koranyi region with vertex 0 in H
N :

|z|
Re z − ‖w‖2

< M.

For τ(z, w):

∣

∣tnz + ‖wn‖2 + iyn + 2
〈√

tnw,wn

〉∣

∣

tn Re z + ‖wn‖2 + 2
√
tn Re 〈w,wn〉 − ‖√tnw + wn‖2

=

∣

∣

∣
z + ‖wn‖2

tn
+ iyn

tn
+ 2

〈

w, wn√
tn

〉∣

∣

∣

Re z + ‖wn‖2

tn
+ 2 Re

〈

w, wn√
tn

〉

− ‖w + wn√
tn
‖2

−−−→
n→∞

|z|
Re z − ‖w‖2

.

The limit is bounded on compact subsets of H
N , so τn(z, w) belong to some Koranyi

region. �
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Claim 4.3. Let φ := f ◦ η−1 in B
N . Then

lim inf
z→(1,0)

1 − ‖φ(z)‖
1 − ‖z‖ = 1

and Lemma 3.5 is applicable.

Proof.

lim inf
z→(1,0)

1 − ‖φ(z)‖
1 − ‖z‖ = lim inf

z→(1,0)

1 − ‖f ◦ η−1(z)‖
1 − ‖η−1(z)‖ lim

z→(1,0)

1 − ‖η−1(z)‖
1 − ‖z‖

= lim inf
z→(1,0)

1 − ‖f(z)‖
1 − ‖z‖ lim

z→(1,0)

1 − ‖η−1(z)‖
1 − ‖z‖ = α · 1

α
= 1.

Since η−1 is an automorphism that fixes (1, 0) and

lim
z→(1,0)

1 − ‖η−1(z)‖
1 − ‖z‖ = lim

z→(1,0)

1 − ‖η−1(z)‖2

1 − ‖z‖2
= lim

(z,w)→(0,0)

1 − ‖C−1( z
α
, w√

α
)‖2

1 − ‖C−1(z, w)‖2

= lim
(z,w)→(0,0)

1 −
∣

∣

∣

1−z/α
1+z/α

∣

∣

∣

2

− 4‖w‖2

α|1+z/α|2

1 −
∣

∣

1−z
1+z

∣

∣

2 − 4‖w‖2

|1+z|2
= lim

(z,w)→(0,0)

Re z−‖w‖2

α

Re z − ‖w‖2
· |1 + z|2
∣

∣1 + z
α

∣

∣

=
1

α
.

�

Now consider a normal family {fn ◦ τn ◦ p1}, where p1(z, w) = (z, 0).

Claim 4.4. The sequence τn ◦ p1(z, w) → 0 is restricted uniformly on compact subsets of

H
N .

Proof. Note that τn ◦ p1(z, w) = (tnz + ‖wn‖2 + iyn, wn).

Following Definition 3.2, we need to show that τn ◦ p1(z, w) is special in H
N :

lim
n→∞

‖wn‖2

Re(tnz + ‖wn‖2 + iyn)
= lim

n→∞

‖wn‖2

tn

Re z + ‖wn‖2

tn

= 0,

and that the projection on the first component is non-tangential, i.e that

|tnz + ‖wn‖2 + iyn|
Re(tnz + ‖wn‖2 + iyn)

is bounded from above, but

lim
n→∞

|tnz + ‖wn‖2 + iyn|
Re(tnz + ‖wn‖2 + iyn)

= lim
n→∞

∣

∣

∣
z + ‖wn‖2

tn
+ iyn

tn

∣

∣

∣

Re z + ‖wn‖2

tn

=
|z|

Re z
,

so it is bounded uniformly on compact subsets of H
N . �

Thus Lemma 3.5 is applicable to the function φ = f ◦ η−1 and the sequence τn ◦ p1(z, w),

which gives us the following
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Lemma 4.5.

lim
n→∞

d (τn(p1(z, w)), φ(τn(p1(z, w)))) = 0.

Proof. Denote (un, vn) := τn(z, 0) and (ũn, ṽn) := φ(τn(z, 0)). Then the restricted K-limits

(1) and (2) in Lemma 3.5 when translated to H
N become

lim
n→∞

ũn

un

= 1 and lim
n→∞

‖ṽn‖2

un

= 0.

Since lim
n→∞

un

tn
= z,

lim
n→∞

ũn

tn
= z and lim

n→∞

‖ṽn‖2

tn
= 0.

Now d((un, vn), (ũn, ṽn))2 = 1 − 4(Reun − ‖vn‖2)(Re ũn − ‖ṽn‖2)

|ũn + ūn − 2 〈ṽn, vn〉 |2
.

lim
n→∞

4(Reun − ‖vn‖2)(Re ũn − ‖ṽn‖2)

|ũn + ūn − 2 〈ṽn, vn〉|2
= lim

n→∞

4(Re un

tn
− ‖vn‖2

tn
)(Re ũn

tn
− ‖ṽn‖2

tn
)

∣

∣

∣

ũn

tn
+ ūn

tn
− 2

〈

ṽn√
tn
, vn√

tn

〉∣

∣

∣

2

=
4(Re z − 0)(Re z − 0)

|z + z̄ + 0|2
= 1,

and

lim
n→∞

d(τn(z, 0), φ(τn(z, 0))) = 0.

�

Proof of Theorem 1.15. Consider the normal family {fn ◦ τn ◦ p1} and let ψ be one of its

normal limits. Then, by Schwarz’s lemma

d(fn ◦ τn(z, 0), fn+1 ◦ τn+1(z, 0)) ≤ d(τn(z, 0), f ◦ τn+1(z, 0))

≤ d(τn(z, 0), f ◦ η−1 ◦ τn(z, 0)) + d(η−1 ◦ τn(z, 0), τn+1(z, 0)).(4.1)

The first summand in (4.1) tends to zero by lemma 4.5, and the second does by part (2) of

lemma 4.1, so

d(fn ◦ τn(z, 0), fn+1 ◦ τn+1(z, 0)) → 0

as n tends to infinity. It follows that if a subsequence {fnk
◦ τnk

◦ p1} converges uniformly

on compact subsets of H
N to ψ, then so does {fnk+1 ◦ τnk+1 ◦ p1}. By construction

fnk+1 ◦ τnk+1 ◦ p1 = f ◦ fnk
◦ τnk+1 ◦ p1,

where the left hand-side tends to ψ, and it is enough to show that fnk
◦τnk+1◦p1 → ψ◦η−1 to

prove (1.11). Note that η−1 and p1 are linear functions with diagonal matrices and therefore

commute, so fnk
◦ τnk

◦ η−1 ◦ p1 → ψ ◦ η−1 and it is enough to show that

d
(

fnk
◦ τnk

◦ η−1 ◦ p1(Z), fnk
◦ τnk+1 ◦ p1(Z)

)

→ 0.
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Applying Schwarz’s lemma again,

d
(

fnk
◦ τnk

◦ η−1 ◦ p1(Z), fnk
◦ τnk+1 ◦ p1(Z)

)

≤ d
(

τnk
◦ η−1(z, 0), τnk+1(z, 0)

)

= d
(

τ−1
nk+1 ◦ τnk

◦ η−1(z, 0), (z, 0)
)

→ 0

by statement (1) of Lemma 4.1, so we have

ψ = f ◦ ψ ◦ η−1,

which is equivalent to (1.11).

All we are left to show is that ψ fixes 0. Note that the image of
(

αk−1
αk+1

, 0
)

under the

Cayley transform is ak =
(

α−k, 0
)

and that p1(ak) = ak. Then by definition of the sequence

Zn and τn and Schwarz’s lemma

d (fn ◦ τn(ak), Zk) = d (fn ◦ τn(ak), fn(Zn+k)) ≤ d
(

ak, τ
−1
n ◦ τn+k(1, 0)

)

= d
(

η−1
k (1, 0), τ−1

n ◦ τn+k(1, 0)
)

→ 0,

for any k = 1, 2, . . . as n tends to infinity, by (1) of lemma 4.1. Thus we have

ψ(ak) = Zk.

Define the sequence

gn(Z) := τ−1
n ◦ ψ ◦ η−1

n (Z).(4.2)

Then gn((1, 0)) = (1, 0) and gn(a1) = τ−1
n (τn+1(1, 0)) → η−1(1, 0) = a1, as n tends to infinity.

Hence any normal limit of gn fixes (1, 0) and a1, and, by Corollary (2.2.15) from [1], must

fix the entire subspace, containing (1, 0) and a1, i.e. the set
{

(z, 0) ∈ H
N
}

. Note that

ψ(z, w) = ψ(z, 0) and by (4.2) gn(z, w) = gn(z, 0), so gn → p1.

Consider a straight line segment connecting (1, 0) and (0, 0). Obviously it is special curve

and by theorem (2.2.25) from [1] ψ will have restricted K-limit 0 at 0 if

lim
t→0

ψ(t, 0) = 0.(4.3)

By (4.2), ψ = τn◦gn◦ηn. Consider a straight line segment connecting (α−(n+1), 0) to (α−n, 0).

It will be mapped by ηn to a segment [(α−1, 0), (1, 0)]. Pick a point (t, 0) on this segment.

Then

‖τn(gn(t, 0))‖ ≤ ‖τn(gn(t, 0)) − τn(t, 0)‖ + ‖τn(t, 0)‖ −−−→
n→∞

0,

since gn(t, 0) → (t, 0), τn(t, 0) → 0 uniformly in t and τ ′n is bounded, and (4.3) follows.
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Now we can show that {fn ◦ τn ◦ p1} actually converges to ψ. By Schwarz’s lemma, (1.11)

and (4.2)

d (fn ◦ τn ◦ p1(z, w), ψ(z, w)) = d
(

fn ◦ τn ◦ p1(z, w), ψ ◦ ηn ◦ η−1
n (z, w)

)

=d
(

fn ◦ τn ◦ p1(z, w), fn ◦ ψ ◦ η−1
n (z, w)

)

≤ d
(

τn ◦ p1(z, w), ψ ◦ η−1
n (z, w)

)

=d (p1(z, w), gn(z, w)) −−−→
n→∞

0.

�

5. Conjugation for expandable maps

In this section we will provide conjugation for the maps with some regularity at the BRFP.

This class of maps was introduced in [5]:

Definition 5.1. Let f : H
N → H

N be holomorphic. We will call the map f expandable at 0

(write f ∈ E1
HN (0)), if f has the following expansion near 0:

f(z, w) = (αz + o(|z|), Aw + o(|z|1/2)).

In particular, 0 is a fixed point of f .

By applying part (1) of Lemma 3.5 to any special sequence (zn, wn) → 0, we obtain

lim
n→∞

αzn + o(|zn|)
zn

= α,

i.e. α must be the dilation coefficient of f at 0.

Remark 5.2. Note that A cannot have eigenvalues |aj,j|2 > α, because otherwise f(HN) 6⊂
H

N .

Proof of Theorem 1.16. The construction is essentially the same as in section 4. We modify

the definition of τn as follows: τn := Ω−n ◦ h−1
n ◦ δ−1

n , where Ω is as in the statement of

Theorem 1.16. The following two limits are generalization of lemma 4.1:

τ−1
n+k ◦ τn(z, w) = δn+k ◦ hn+k ◦ Ωk ◦ h−1

n ◦ δ−1
n (z, w) =

(

tn
tn+k

z +
‖wn‖2

tn+k

+ i
yn

tn+k

+ 2

√
tn

tn+k

〈w,wn〉 +
‖wn+k‖2

tn+k

− i
yn+k

tn+k

− 2

tn+k

〈

Ωk(
√
tnw + wn), wn+k

〉

,

Ωk(
√
tnw + wn) − wn+k√

tn+k

)

−−−→
n→∞

(

αkz,Ωkαk/2w
)

=: ηk(z, w).

(Here ηk differs from previous ηk by rotation by Ωk.)

τ−1
n+1 ◦ η−1 ◦ τn(z, w) = δn+1 ◦ hn+1 ◦ Ωn+1 ◦ η−1 ◦ Ω−n ◦ h−1

n ◦ δ−1
n (z, w) =

(

tn
tn+1α

z +
‖wn‖2

tn+1α
+ i

yn

tn+1α
+ 2

√
tn

tn+1α
〈w,wn〉 +

‖wn+1‖2

tn+1

− i
yn+1

tn+1

− 2

tn+1

〈√
tnw + wn, wn+1

〉

,
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√
tnw + wn√
tn+1

√
α

− wn+1√
tn+1

)

−−−→
n→∞

(z, w) .

Now φ(z, w) := f ◦ η−1(z, w) = f(α−1z,Ω−1α−1/2w) = (z + o(|z|), Ω−1A√
α
w + o(|z|1/2)).

Let pL(z, w) = (z, w1, . . . , wL, 0, . . . , 0), i.e. projection on the first 1 + L dimensions.

Denote (un, vn) := τn(pL(z, w)) and (ũn, ṽn) := φ(τn(pL(z, w))). Then un = tnz+ ‖wn‖2 +

iyn + 2
〈√

tnpL(w), wn

〉

and vn = Ω−n(
√
tnpL(w) + wn). Since

lim
n→∞

un

tn
= lim

n→∞

tnz + ‖wn‖2 + iyn + 2
〈√

tnpL(w), wn

〉

tn
= z,

o(|un|) = o(tn) and o(|un|1/2) = o(
√
tn), and, consequently, ũn = un + o(tn) and

ṽn =
Ω−1A√

α
vn+o(

√
tn) =

Ω−(n+1)A
√
tn√

α
pL(w)+

Ω−(n+1)A√
α

wn+o
√
tn) = Ω−n

√
tnpL(w)+o(

√
tn).

The pseudo-hyperbolic distance in H
N is

d2((un, vn), (ũn, ṽn)) = 1 − 4(Reun − ‖vn‖2)(Re ũn − ‖ṽn‖2)

|ũn + ūn − 2 〈ṽn, vn〉 |2
,

and because

lim
n→∞

4(Reun − ‖vn‖2)(Re ũn − ‖ṽn‖2)

|ũn + ūn − 2 〈ṽn, vn〉|2

= lim
n→∞

(Re un

tn
− ‖vn‖2

tn
)(Re un

tn
+ o(tn)

tn
− ‖Ω−npL(w) + o(

√
tn)√
tn

‖2)
∣

∣

∣
Re un

tn
+ o(tn)

tn
−
〈

Ω−npL(w) + o(
√

tn)√
tn
, vn√

tn

〉
∣

∣

∣

2

=
(Re z − ‖pL(w)‖2)(Re z − ‖pL(w)‖2)

|Re z − 〈Ω−npL(w),Ω−npL(w)〉|2
= 1,

d2((un, vn), (ũn, ṽn)) → 0, i.e. conclusion analogous to the statement of lemma 4.5 holds.

Now define ψ as one of the normal limits of {fn ◦ τn ◦ pL}. The above computations shows

that if fnk
◦ τnk

◦ pL converges to ψ, then fnk+1 ◦ τnk+1 ◦ pL also converges to ψ. It is enough

to show that fnk
◦ τnk+1 ◦ pL converges to ψ ◦ η−1 uniformly on compact subsets of H

N . Note

that η−1 ◦ pL = pL ◦ η−1. Because

d
(

fnk
◦ τnk

◦ η−1 ◦ pL(z, w), fnk
◦ τnk+1 ◦ pL(z, w)

)

= d
(

τ−1
nk+1 ◦ τnk

◦ η−1 ◦ pL(z, w), pL(z, w)
)

−−−→
n→∞

0,

lim
n→∞

fnk
◦ τnk+1 ◦ pL(z, w) = lim

n→∞
fnk

◦ τnk
◦ η−1 ◦ pL(z, w) = ψ ◦ η−1(z, w),

and (1.11) holds.

By the same reasoning as in proof of Theorem (1.15), ψ fixes 0 in the sense of restricted

K-limits. �
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Remark 5.3. Note that in the case when eigenvalues of A are equal to
√
α, f will be con-

jugated to same automorphism η as in Theorem 1.15, but the intertwining map ψ will be

different (its image needs not be one-dimensional).

Remark 5.4. Consider the hyperbolic map f : H
N → H

N with the Denjoy-Wolff point infinity

and BRFP 0 with multiplier 1 < α <∞ : f(z, w) = (αz, 0). Clearly, the image of f is one-

dimensional and from (1.11) we have that image of ψ must be one-dimensional, so the result

of Theorem 1.15 cannot be improved in general. For less trivial example, one may consider

f(z, w) = (αz, βw) with 0 < |β|2 < α. Now the image of f has dimension N , but

∞
⋂

n=1

fn(HN)

is one-dimensional section of H
N and the range of the intertwining map ψ is also one-

dimensional.

6. Examples and open questions

6.1. Examples. In the beginning of this section we will describe all quadratic polynomials

that map the two-dimensional Siegel domain H
2 = {(z, w) ∈ C

2 |Re z > |w|2} into itself while

fixing zero, and completely characterize their dynamics. Some of these polynomials happen

to have non-isolated BRFPs (see Example 6.3).

Claim 6.1. A quadratic polynomial f : C
2 → C

2 that fixes zero maps H
2 into H

2 if and only

if it is of the form f(z, w) = (Az +Bw2, Cw) with A− |B| ≥ |C|2.

Proof. Consider the general form f(z, w) = (f1(z, w), f2(z, w)) = (az + bw + cz2 + dzw +

ew2, Az +Bw + Cz2 +Dzw + Ew2). First we will show that most coefficients must be 0.

Since Re f1(z, w) > |f2(z, w)|2 ≥ 0, then Re f1(z, 0) = Re(az + cz2) > 0 ∀z such that

Re z > 0. When z → 0, az + cz2 ∼ az, so a > 0. Now Re f1(z, 0) = |z|(a cos(Arg z) +

|c||z| cos(2 Arg z + Arg c)), we can choose Arg z such that cos(2 Arg z + Arg c) < 0 and |z|
large enough so Re f1(z, 0) < 0 unless |c| = 0, so c must be 0.

Thus f(z, 0) = (az,Az + Cz2), and we must have a|z| cos(Arg z) > |z|2|A + Cz|2 or

a cos(Arg z) > |z||A+ Cz|2. The right hand side goes to ∞ as |z| → ∞ unless C = A = 0.

Thus f must be of the form f(z, w) = (az+ bw+dzw+ ew2, Bw+Dzw+Ew2). Consider

the set {(t, 1) ∈ C
2 | t > 1} ⊂ H

2. f(t, 1) = (at+dt+b+e, B+E+Dt) and Re(at+dt+b+e) <

|B + E +Dt|2 for large enough t unless D = 0.

Now consider the set {(t2 + ε, t) ∈ C
2 | t > 0} ⊂ H

2. Re f1(t
2 + ε, t) ≤ a(t2 + ε) + |b|t +

|d|(t2 + ε)t+ |e|t2 < |Bt+ Et2|2 for large enough t unless E = 0.
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To show that d = 0, consider {(z, w) ∈ C
2 | z = t2+ε, |w| = t, t > 1} ⊂ H

2. Then on this

set Re f1(z, w) ≤ at2+ε + |b|t+ |e|t2 + |d|t3+ε cos (Arg d+ Argw). We can choose Argw such

that cos (Arg d+ Argw) < 0 and t large enough to make Re f1(z, w) < 0, unless d = 0.

The last part is to show that b = 0. Consider {(z, w) ∈ C
2 | z = t2−ε, |w| = t, 1 > t > 0} ⊂

H
2. Then on this set Re f1(z, w) ≤ at2−ε + |b|t cos (Arg b+ Argw) + |e|t2. We can choose

Argw such that cos (Arg b+ Argw) < 0 and t close enough to 0 such that Re f1(z, w) < 0

unless b = 0.

Thus f has only three nonzero terms, and (by changing notations) the function must have

form f(z, w) = (Az+Bw2, Cw). If A−|B| ≥ |C|2, then Re(Az+Bw2) ≥ ARe z−|B||w|2 >
(A−|B|)|w|2 ≥ |C|2|w|2 on H

2 and hence f(H2) ⊆ H
2. If A−|B| < |C|2, we can choose Argw

such that cos (ArgB + 2 Argw) = −1 and Re z = |w|2+ ε
A
|w|2, where ε = |C|2−A+ |B| > 0,

and then Re(Az + Bw2) = ARe z + |B||w|2 cos (ArgB + 2 Argw) = ARe z − |B||w|2 =

(A− |B| + ε)|w|2 = |C|2|w|2, thus f(H2) 6⊆ H
2. �

Claim 6.2. (1) Aside from the trivial cases A = 0 (must be zero map, because then

B = C = 0) and C = 0 (one-dimensional projection) f(z, w) = (Az +Bw2, Cw) has

well-defined inverse on H
2

f−1(z, w) =

(

z

A
− B

AC2
w2,

w

C

)

(though its image may be outside of the Siegel domain).

(2) nth iterate of f has the form

f ◦n(z, w) =

(

Anz +
An − C2n

A− C2
Bw2, Cnw

)

.

Proof. (1) is obvious. (2) can be shown by induction. �

Now we will find fixed points and classify the dynamical behavior of polynomials based

on them.

Cases C = 0 (projection on the first dimension) and B = 0 (linear map) are trivial. So

assume B 6= 0 and C 6= 0. To find the set of finite fixed points (either inner or boundary)

we need to solve

{

Az +Bw2 = z

Cw = w

If C = 1, we can assume A > 1 (otherwise B = 0 and the map is identity). Then there

are solutions

(

− Bw2

A− 1
, w

)

. Since

Re

(

− Bw2

A− 1

)

− |w|2 ≤ |B||w|2
A− 1

− |w|2 =
|B| + 1 − A

A− 1
|w|2 ≤ 0,
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any solution must be on the boundary of H
2 and nonzero solutions exist iff A = |B| + 1. In

this case, there are infinitely many fixed points on the boundary (see Example (6.3) below).

If C 6= 1 then nonzero solutions exist iff A = 1 and they have form (z, 0). Thus we have

interior fixed points.

If C 6= 1 and A 6= 1 then there are no fixed points inside of the domain and only two fixed

points on the boundary (zero and infinity). One of them must be the Denjoy-Wolff point

and the other BRFP.

The dilatation coefficient at (0, 0) is

c = lim inf
(z,w)→(0,0)

Re(Az +Bw2) − |C|2|w|2
Re z − |w|2 ≥ lim inf

(z,w)→(0,0)

ARe z − |B||w|2 − |C|2|w|2
Re z − |w|2

≥ lim inf
(z,w)→(0,0)

ARe z − A|w|2
Re z − |w|2 = A

and value A attained for z = t→ 0 and w = 0, so c = A.

Thus if A < 1 then zero is the Denjoy-Wolff point of f and this is hyperbolic case c =

A < 1. If A > 1 then (0, 0) is the BRFP with dilatation coefficient A > 1 and infinity must

be the Denjoy-Wolff point. The dilatation coefficient at infinity

c = lim inf
(z,w)→∞

Re(Az +Bw2) − |C|2|w|2
Re z − |w|2

|z + 1|2
|Az +Bw2 + 1|2 ≤ lim

t→∞

ARe t

t

|t+ 1|2
|At+ 1|2 =

1

A
,

thus c ≤ 1
A
< 1 and this is also hyperbolic case.

Example 6.3 (Example of a quadratic function with non-isolated BRFP). Consider the

function f(z, w) := (2z + w2, w). Then f ◦n(z, w) = (2nz + (2n − 1)w2, w), the Denjoy-Wolff

point is infinity and this is the hyperbolic case. The curve {(r2, ir)|r ∈ R} is clearly the set

of fixed points on the boundary. Any of those points can be mapped to (0, 0) by translation

hr(z, w) := (z + r2 + 2irw,w − ir)

with

h−1
r (z, w) = (z + r2 − 2irw,w + ir)

Then

hr◦f ◦h−1
r (z, w) = hr◦f(z+r2−2irw,w+ir) = hr(2z+r

2−2irw+w2, w+ir) = (2z+w2, w),

i.e. the behavior of the function in any of those points is the same as in (0, 0).

The dilatation coefficient at zero is

c = lim inf
(z,w)→(0,0)

Re(2z + w2) − |w|2
Re z − |w|2 = 1 + lim inf

(z,w)→(0,0)

Re z + Re(w2)

Re z − |w|2 = 2.

Thus we have a set of BRFP’s on the boundary with the same dilatation coefficient, neither

of them is isolated.
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Remark 6.4. Though (0, 0) is non-isolated BRFP for f(z, w) := (2z+w2, w), the statement of

Lemma (3.1) still holds in this case. Zn = ( 1
2n , 0) is clearly an example of backward-iteration

sequence with step d = 1
3
. Consequently, it is still possible to construct a conjugation as in

Theorem 1.15.

Now we will describe another class of self-maps of H
2, the construction of these will be

based on a function of one-dimensional half-plane H.

Example 6.5. Let φ : H → H be a holomorphic function of right-hand side half-plane,

of hyperbolic or parabolic type, with the Denjoy-Wolff point infinity. Define a function f

on H
2 as f(z, w) := (φ(z − w2) + w2, w). This function is well-defined since ∀(z, w) ∈ H

2

Re(z−w2) ≥ Re z− |w|2 > 0. Moreover, by Julia’s lemma in H, Reφ(z−w2) ≥ Re(z−w2)

and thus Re(φ(z − w2) + w2) ≥ Re z > |w|2, and the function f maps H
2 into itself.

Claim 6.6. Infinity is the Denjoy-Wolff point for f and f has the same type and same

multiplier at infinity as φ. Moreover, if φ has a BRFP y0i ∈ ∂H then f has a 1-dimensional

real submanifold {(y0i+ t2, t)|t ∈ R} of BRFPs.

Proof. Iterates of f have a form f ◦n(z, w) = (φ◦n(z − w2) + w2, w) and clearly the Denjoy-

Wolff point is infinity. Assume φ has multiplier c1 ≤ 1 at infinity, then f has multiplier

c = lim inf
(z,w)→∞

Re(φ(z − w2) + w2) − |w|2
Re z − |w|2

∣

∣

∣

∣

z + 1

φ(z − w2) + w2 + 1

∣

∣

∣

∣

2

≤ lim inf
z→∞

Reφ(z)

Re z

∣

∣

∣

∣

z + 1

φ(z) + 1

∣

∣

∣

∣

2

= c1.

Since f(z, 0) = (φ(z), 0) and using Julia’s lemma (2.1), we have

Reφ(z) ≥ 1

c
Re z or

Reφ(z)

Re z
≥ 1

c
∀z ∈ H,

and, taking limit of both sides,
1

c1
≥ 1

c
.

Thus c1 = c, the multipliers coincide and therefore functions f and φ are of the same type

(either both hyperbolic or both parabolic).

Now f(y0i+t
2, t) = (φ(y0i)+t

2, t) = (y0i+t
2, t) and (y0i+t

2, t) is a BRFP for f ∀t ∈ R. �

6.2. Open questions.

6.2.1. The dimension of the stable set. The stable set S at the BRFP q is defined as the

union of all backward-iteration sequences with bounded pseudo-hyperbolic step that tend to

q. In one dimension, S = ψ(H). It is important to understand the properties of the stable

set in N dimensions, because it may help to find the ”best possible” intertwining map, i.e.

the intertwining map whose image has the largest dimension.
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6.2.2. Non-isolated fixed points and necessary conditions for conjugation at BRFP. As we

can see from Remark 6.4, the condition on the BRFP to be isolated is sufficient, but not

necessary. It is still not known if there are any BRFP for which the conjugation construction

does not work. One needs to prove a result, similar to Lemma 3.1 for non-isolated BRFP or

to find necessary conditions on BRFP so that the conjugation construction will work.

6.2.3. Convergence of backward-iteration sequences in parabolic case. Theorem 1.8 general-

izes the one-dimensional Theorem 1.3 only in hyperbolic and attracting-elliptic cases. It is

still not known whether backward-iteration sequences with bounded step always converge

for parabolic maps in higher dimensions.
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