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Abstract. Based on dynamical behavior, all self-maps of the unit disk in
the complex plane can be classified as elliptic, hyperbolic or parabolic. The
parabolic case is the most complicated one and branches into two subcases -

zero-step and non-zero-step cases. In several dimensions, zero-step and non-
zero step cases can be defined for sequences of forward iterates, but it is not
known yet if the classification can be extended to parabolic maps of the ball.
However, some geometric properties of the forward iterates can be generalized

to higher-dimensional case.

1. Introduction

Consider an analytic self-map of the open unit disk D in the complex plane,
i.e. the function f such that f(D) ⊆ D. The classical Schwarz’s lemma says, that
if f(0) = 0, then

|f(z)| ≤ |z| and |f ′(0)| ≤ 1,

and if equality holds for a point z 6= 0, then f(z) = cz with |c| = 1 (rotation around
the center). In other words, unless f is a rotation, the (Euclidean) distance between
images of z and 0 is smaller then the distance between z and 0.

A similar statement about any two points in the unit disk holds, if we replace
Euclidean distance by pseudo-hyperbolic distance:

Theorem 1.1 (Point-invariant form of Schwarz’s lemma). For any analytic
self-map f of the unit disk and any z, w ∈ D,
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and equality holds for some distinct pair iff f is an automorphism of D; i.e. f is

contraction in the pseudo-hyperbolic metric d(z, w) =
∣
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z−w
1−zw
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∣

∣:

d(f(z), f(w)) ≤ d(z, w).(1.1)

Denote fn = f◦n and consider the sequence of forward iterates of f , i.e. zn =
fn(z0). By Schwarz’s lemma, the sequence d(zn, zn+1) is non-increasing; moreover,
as the following theorem states, except for the case of an elliptic automorphism, all
forward iteration sequences must converge to the same point in the closed disk:
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Theorem 1.2 (Denjoy-Wolff [9], [8], [10] and [3]). If f is not an elliptic au-
tomorphism, then there exists a unique point p ∈ D (called the Denjoy-Wolff point
of f) such that the sequence of iterates {fn} converges to p uniformly on compact
subsets of D.

Based on their behavior near the Denjoy-Wolff point p, we can classify self-maps
of the disk as follows:

(1) If the Denjoy-Wolff point p is inside of the unit disk, then f is called
elliptic. The point p is a fixed point of f (i.e. f(p) = p) and |f ′(p)| ≤ 1.
When |f ′(p)| = 1, f is an elliptic automorphism (up to change of variables,
rotation around the center).

(2) If the Denjoy-Wolff point p is on the boundary of the unit disk and f ′(p) <
1 (in the sense of non-tangential limits), then f is called hyperbolic. p is
again a fixed point of f , now in the sense of non-tangential limits. Forward
iterates tend to the Denjoy-Wolf point along non-tangential directions.

(3) If the Denjoy-Wolff point p is on the boundary of the unit disk and
f ′(p) = 1 (in the sense of non-tangential limits), then f is called par-
abolic. Similarly to the hyperbolic case, p is a fixed point of f ; but now
forward iterates may converge tangentially as well as non-tangentially to
the boundary.

In this paper we will discuss the behavior of forward iterates in the parabolic
case in the unit disk D and in the ball BN .

In some cases, it will be convenient to use half-plane H = {z ∈ C | Re z > 0}
or Siegel half-plane H

N =
{

(z, w) ∈ C× C
N−1 : Re z > ‖w‖2

}

, which are biholo-

morphically equivalent to the unit disk D and to the unit ball BN , respectively.
Without loss of generality, we can always assume that in these models, the Denjoy-

Wolff point is ∞ ∈ H, or ∞ ∈ HN .

2. One-dimensional (unit disk) case

Note that by (1.1), the pseudo-hyperbolic distance between two consecutive
forward iterates d(zn, zn+1) is non-increasing and thus has a limit d∞. Whether
this limit is positive or zero defines the behavior of the sequence and the function.

Definition 2.1. We will call a sequence {zn} a zero-step (respectively, non-
zero-step) sequence, if d∞ = lim d(zn, zn+1) = 0 (respectively, d∞ > 0).

In the one-dimensional case, as a consequence of the theorem of Pommerenke
(Theorem 2.3 below), zero-step and non-zero-step properties of a sequence of for-
ward iterates do not depend on the choice of the starting point but depend on
the function only, so we can call functions parabolic zero-step and parabolic non-
zero step, respectively (see [6]). It is still not known if the same is true in several
variables.

Remark 2.2. Here we follow the terminology introduced in [6]; Pommerenke
in [7] and [2] used the term ”parabolic” for the parabolic non-zero-step case and
”identity” for the parabolic zero-step case.

More about the parabolic non-zero-step and zero-step cases in one dimension,
including backward iteration and examples, can be found in [6].
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The crucial difference between parabolic non-zero-step and zero-step functions
in the unit disk is that the former are conjugated to a (vertical) translation in the
half-plane:

Theorem 2.3 (Pommerenke, [7]). Let f be an analytic self-map of H of para-
bolic type with Denjoy-Wolff point infinity and zn = xn + iyn = fn(1) be a forward
iteration sequence. Then the normalized iterates

ψn(z) =
fn(z)− iyn

xn

converge uniformly on compact subsets of H to a function ψ such that ψ(H) ⊆ H,
ψ(1) = 1 and

ψ ◦ f(z) = φ ◦ ψ(z), ∀z ∈ H;

where φ is a Möbius transformation of H into itself and ψ(∞) = ∞. In particular,
if f is parabolic non-zero-step type, φ(z) = z + ib, i.e. translation in H, and if f is
parabolic zero-step, φ(z) ≡ z and ψ(z) ≡ 1.

Non-trivial conjugation for parabolic zero-step case was discovered at [2]:

Theorem 2.4 (Baker and Pommerenke). Let f be an analytic self-map of H
of parabolic zero-step type with the Denjoy-Wolff point infinity. Then the sequence
of normalized functions

ψn(z) =
fn(z)− zn

zn+1 − zn

converges uniformly on compact subsets of H to a function ψ such that

ψ(f(z)) = ψ(z) + 1, ∀z ∈ H.

Thus parabolic zero-step maps can be conjugated to a (horizontal) shift in the
plane.

Geometrically, these two types of maps differ by how forward iterates approach
the Denjoy-Wolff point. In the parabolic non-zero-step case they converge to the
Denjoy-Wolff point tangentially (Remark 1, [7]), see Figure 1. In the parabolic

Figure 1. Orbits converge tangentially to the Denjoy-Wolff point
p in the parabolic non-zero-step case.



4 OLENA OSTAPYUK

zero-step case, forward iterates may converge radially (Figure 2), but a complete
classification of their behavior has still not been achieved.

Figure 2. In some cases, orbits converge radially to the Denjoy-
Wolff point p in the parabolic zero-step case.

3. Multi-dimensional case

Now consider self map f ofN -dimensional unit ball BN =
{

Z ∈ C
N : ‖Z‖ < 1

}

.

Schwarz’s lemma still holds in B
N , with pseudo-hyperbolic distance defined as

dBN (Z,W ) :=





|1− 〈Z,W 〉|2
(

1− ‖Z‖2
)(

1− ‖W‖2
)





1/2

.(3.1)

And a version of the Denjoy-Wolff theorem also holds:

Theorem 3.1 (Hervé [4], MacCluer [5]). Let f : BN → B
N be a holomorphic

map without fixed points in B
N . Then the sequence of iterates {fn} converges

uniformly on compact subsets of B
N to the constant map Z 7→ p for a (unique)

point p ∈ ∂BN (called the Denjoy-Wolff point of f); and the number

c := lim inf
Z→p

1− ‖f(Z)‖
1− ‖Z‖ ∈ (0, 1]

is called the multiplier or the boundary dilatation coefficient of f at p.

The map f is called hyperbolic if c < 1 and parabolic if c = 1.
For the maps of parabolic type, it is still possible to define zero-step and non-

zero step sequences as in Definition 2.1. However, the question whether the same
map can have sequences of both types is still open.

Conjecture 3.2. Let f a self map of B
N of parabolic type. If the step

dBN (fn(Z0), fn+1(Z0)) → 0 for some Z0 ∈ B
N , then dBN (fn(Z), fn+1(Z)) → 0

for all Z ∈ B
N .

To describe geometric behavior of forward iterates near the boundary of the
ball, we will need several notions that generalize non-tangential approach in the
disk:
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Definition 3.3. The Koranyi region K(X,M) of vertex X ∈ ∂BN and ampli-
tude M > 1 is the set

K(X,M) =

{

Z ∈ B
N

∣

∣

∣

∣

|1− 〈Z,X〉|
1− ‖Z‖ < M

}

.

When N = 1, it is the usual Stolz angle in the disk; but for N > 1 the region
is tangent to the boundary of the ball along some directions.

Definition 3.4. For X ∈ ∂BN , a sequence Zn → X is called special if

lim
n→∞

‖Zn − 〈Zn, X〉X‖2
1− ‖ 〈Zn, X〉X‖2 = 0,(3.2)

and restricted if it is special and its orthogonal projection 〈Zn, X〉X is non-
tangential.

The connection between non-tangential, Koranyi and restricted approaches is
described by the following

Lemma 3.5 (Lemma (2.2.24), [1]). Let Zn ∈ B
N be a sequence such that Zn →

X ∈ ∂BN as n→ ∞. Then

(i) if Zn is non-tangential, then it is restricted;
(ii) assume Zn is special. If Zn is restricted, then it lies eventually in a Ko-

ranyi region with vertex X. Conversely, if Zn lies in a Koranyi region, it is
restricted.

Thus Koranyi and restricted regions are weaker generalizations of the non-
tangential approach in one dimension. In this paper, we consider restricted se-
quences of forward iterates in the parabolic case.

Similarly to the non-tangential approach the one-dimensional case, Koranyi
regions and restricted approaches are used to define limits at the boundary of the
ball, called K-limits and restricted K-limits, respectively.

We will need the following result:

Lemma 3.6 (part (i) of Theorem 2.2.29 in [1]). Let f be an analytic self-map
of BN and X ∈ ∂BN be such that

lim inf
Z→X

1− ‖f(Z)‖
1− ‖Z‖ = α <∞.

Then f has K-limit Y ∈ ∂BN , and the function

1− 〈f(Z), Y 〉
1− 〈Z,X〉

has restricted K-limit α at X and is bounded in every Koranyi region.

We obtained the following result for the forward iteration sequences in the unit
ball:

Theorem 3.7. Let f be a parabolic self-map of the unit ball B
N with the

Denjoy-Wolff point (1, 0) ∈ C×C
N . If the sequence of forward iterates {Zn}∞n=1

is
restricted, then it must have zero step, i.e., dBN (Zn, Zn+1) → 0.
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Proof. Denote Zn = (zn, wn) ∈ C×C
N−1. Since Zn is restricted, it is special,

i.e.,

lim
n→∞

‖wn‖2
1− |zn|2

= 0(3.3)

and projections on the first dimension zn tend to 1 non-tangentially. Moreover, by
Lemma 3.6,

lim
n→∞

1− zn+1

1− zn
= 1.(3.4)

By (3.1), the pseudo-hyperbolic distance satisfies

1− d2
BN (Zn, Zn+1) =

(1− ‖Zn‖2)(1− ‖Zn+1‖2)
|1− 〈Zn, Zn+1〉|2

=
(1− |zn|2 − ‖wn‖2)(1− |zn+1|2 − ‖wn+1‖2)

|1− znzn+1 − 〈wn, wn+1〉|2

=
(1− ‖wn‖

2

1−|zn|2
)(1− ‖wn+1‖

2

1−|zn+1|2
)

∣

∣

∣

∣

1−znzn+1√
1−|zn|2

√
1−|zn+1|2

−
〈

wn√
1−|zn|2

,
wn+1√

1−|zn+1|2

〉∣

∣

∣

∣

2

By (3.3), it is enough to show that

∣

∣

∣

∣

∣

1− znzn+1
√

1− |zn|2
√

1− |zn+1|2

∣

∣

∣

∣

∣

→ 1

which is equivalent to d(zn, zn+1) → 0.
By definition,

d(zn, zn+1) =

∣

∣

∣

∣

zn+1 − zn

1− znzn+1

∣

∣

∣

∣

=

∣

∣

∣

∣

1− zn − 1 + zn+1

1− zn + zn − znzn+1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1− 1−zn+1

1−zn
1−zn
1−zn

+ zn
1−zn+1

1−zn

∣

∣

∣

∣

∣

By (3.4), it is enough to show that the denominator is bounded away from 0,
which is indeed the case when 1−zn

1−zn
is bounded away from −1.

But we have

Arg

(

1− zn

1− zn

)

= −2Arg(1− zn) ≥ −π + ǫ,

for some ǫ > 0, because zn → 1 non-tangentially, and thus 1−zn
1−zn

stays away from
−1. �

Remark 3.8. Since any non-tangential approach must be restricted (Lemma
3.5), it follows that every non-zero-step sequence must converge tangentially, and
Theorem 3.7 is a generalization of the classical one-dimensional result (Remark 1,
[7]).
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