Backward iteration in the unit ball

Olena Ostapyuk Kansas State University

One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D}=\{z:|z|<1\}$
n-th iterate of $f f_{n}=\underbrace{f \circ \ldots \circ f}_{n \text { times }}$
By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$
d(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|
$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_{n}(z)$ converges uniformly on compact subsets to p.
if $p \in \mathbb{D}$, then $f(p)=p$ and $\left|f^{\prime}(p)\right|<1$
if $p \in \partial \mathbb{D}$, then $f(p)=p$ and $0<f^{\prime}(p) \leq 1$ in the sense of non-tangential limits

The point p is called the Denjoy-Wolff point of f.

Cases:

1. $p \in \mathbb{D} f$ is called elliptic
2. $p \in \partial \mathbb{D}, f^{\prime}(p)<1$ hyperbolic
3. $p \in \partial \mathbb{D}, f^{\prime}(p)=1$ parabolic

If $p \in \partial \mathbb{D}$, Julia's lemma holds for the point p, and multiplier $c=f^{\prime}(p) \leq 1$:

$$
\forall R>0 \quad f(H(p, R)) \subseteq H(p, c R)
$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R :

$$
H(p, R):=\left\{z \in \mathbb{D}: \frac{|p-z|^{2}}{1-|z|^{2}}<R\right\}
$$

Backward iteration

Backward-iteration sequence:
$\left\{z_{n}\right\}_{n=0}^{\infty}, f\left(z_{n+1}\right)=z_{n}$ for $n=0,1,2 \ldots$
The sequence $d\left(z_{n}, z_{n+1}\right)$ is increasing, so we need a bound on the pseudo-hyperbolic step:

$$
d\left(z_{n}, z_{n+1}\right) \leq a<1
$$

Theorem (Poggi-Corradini, 2003)

Let $\left\{z_{n}\right\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d\left(z_{n}, z_{n+1}\right) \leq a<1$. Then:

1. $z_{n} \rightarrow q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f^{\prime}(q)<\infty$
2. If $q \neq p$, then q is a boundary repelling fixed point (BRFP) (i.e. $f^{\prime}(q)>1$). If $q=p$, f is of parabolic type.
3. When q is BRFP, the convergence $z_{n} \rightarrow q$ is non-tangential.
4. If $q=p$, then $w_{n} \rightarrow q$ tangentially.

Multi-dimensional case

\mathbb{C}^{N}, inner product $(Z, W)=\sum_{j=1}^{N} Z_{j} \overline{W_{j}}$ $\|Z\|^{2}=(Z, Z)$

Unit ball $\mathbb{B}^{N}=\left\{Z \in \mathbb{C}^{N}:\|Z\|<1\right\}$

Julia's lemma in \mathbb{B}^{N} :
Let f be a holomorphic self-map of \mathbb{B}^{N} and $X \in \partial \mathbb{B}^{N}$ such that
$\liminf _{Z \rightarrow X} \frac{1-\|f(Z)\|}{1-\|Z\|}=\alpha<\infty$
Then there exists a unique $Y \in \partial \mathbb{B}^{N}$ such that $\forall R>0 f(H(X, R)) \subset H(Y, \alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^{N}$ and radius $R>0$:
$H(X, R)=\left\{Z \in \mathbb{B}^{N}: \frac{|1-(Z, X)|^{2}}{1-\|Z\|^{2}}<R\right\}$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^{N}, then f_{n} converges uniformly on compacta to $p \in \partial \mathbb{B}^{N}$, the number $c:=\liminf _{Z \rightarrow p} \frac{1-\|f(Z)\|}{1-\|Z\|} \in(0,1]$ is a multiplier of f at p.
f is called hyperbolic if $c<1$ and parabolic if $c=1$.

Siegel domain:

$\mathbb{H}^{N}=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1}: \operatorname{Re} z>\|w\|^{2}\right\}$

Cayley transform: $\mathcal{C}: \mathbb{B}^{N} \rightarrow \mathbb{H}^{N}$

$$
\mathcal{C}((z, w))=\left(\frac{1+z}{1-z}, \frac{w}{1-z}\right)
$$

$$
\mathcal{C}^{-1}((z, w))=\left(\frac{z-1}{z+1}, \frac{2 w}{z+1}\right)
$$

Theorem 1. Let f be a analytic self-map of \mathbb{B}^{N} of hyperbolic type (with Denjoy-Wolff point $\left.p \in \partial \mathbb{B}^{N}\right),\left\{Z_{n}\right\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^{N}}\left(Z_{n}, Z_{n+1}\right) \leq a<1$. Then:

1. There exists a point $\partial \mathbb{B}^{N} \ni \tau \neq p$ such that $Z_{n} \xrightarrow[n \rightarrow \infty]{ } \tau$
2. $\left\{Z_{n}\right\}$ stays in a Koranyi region
3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, where c is the multiplier at p .

Since $\alpha \geq \frac{1}{c}>1$, the point $q \in \partial \mathbb{B}^{N}$ is called the boundary repelling fixed point (BRFP) for f.

Characterization of BRFP in terms of backwarditeration sequences: Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

Conjugations

1-dimensional case, forward iteration (Valiron, 1931):

$$
\psi \circ f=\frac{1}{c} \psi
$$

where $\psi: \mathbb{D} \rightarrow \mathbb{H}$ is an analytic map to a halfplane.

1-dimensional case, backward iteration (PoggiCorradini, 2000): an analytic self-map of the unit disc $\mathbb{D} f$ with BRFP $1 \in \partial \mathbb{D}$ and multiplier α at 1 can be conjugated to the automorphism $\eta(z)=(z-a) /(1-a z)$, where $a=(\alpha-1) /(\alpha+1)$:

$$
\psi \circ \eta(z)=f \circ \psi(z)
$$

via an analytic map ψ of \mathbb{D} with $\psi(\mathbb{D}) \subseteq \mathbb{D}$, which has non-tangential limit 1 at 1.

N-dimensional case, forward iteration (Bracci, Gentili, Poggi-Corradini): conjugation to a multiplication via $\psi: \mathbb{B}^{N} \rightarrow \mathbb{H}$.
(Bracci, Gentili, 2005): f is conjugated to its linear part, assuming some regularity at the Denjoy-Wolff point.

Theorem 2. Suppose $f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}$ is an analytic function of hyperbolic type and 0 is an isolated boundary repelling fixed point for f with multiplier $1<\alpha<\infty$. Then f is conjugated to the automorphism $\eta(z, w)=(\alpha z, \sqrt{\alpha} w)$

$$
\psi \circ \eta(Z)=f \circ \psi(Z),
$$

via an analytic intertwining map ψ.

Construction of ψ :

$$
\psi=\lim _{n \rightarrow \infty}\left\{f_{n} \circ \tau_{n} \circ p_{1}\right\}
$$

where $p_{1}(z, w):=(z, 0)$ is the projection on the first (radial) dimension, so

$$
\psi(z, w)=\psi(z, 0)
$$

and is essentially one-dimensional map.

Conjugation for expandable maps

Definition: An analytic map $f: \mathbb{H}^{N} \rightarrow \mathbb{H}^{N}$ is called expandable at 0 if

$$
f(z, w)=\left(\alpha z+o(|z|), A w+o\left(|z|^{1 / 2}\right)\right)
$$

In particular, 0 is a fixed point of f and α is the multiplier of f at 0 .

Theorem 3. Let f be expandable at 0 , of hyperbolic type, and let the matrix A be diagonal, and WLOG

$$
\begin{aligned}
& \left|a_{j, j}\right|=\sqrt{\alpha} \text { for } j=1 \ldots L \\
& \left|a_{j, j}\right|<\sqrt{\alpha} \text { for } j=L+1 \ldots N-1
\end{aligned}
$$

Then f is conjugated to the automorphism $\eta(z, w)=(\alpha z, \Omega \sqrt{\alpha} w)$ (Ω is a rotation):

$$
\psi \circ \eta(Z)=f \circ \psi(Z)
$$

via an analytic intertwining map $\psi(z, w)=\psi\left(p_{L}(z, w)\right)$, where p_{L} is a projection on the first $L+1$ dimensions.

Open questions

1. "Best possible" intertwining map
2. Number of BRFP
3. Uniqueness of the intertwining map
4. Parabolic and "elliptic" cases
