Backward iteration in the unit ball

Olena Ostapyuk Kansas State University

http://arxiv.org/abs/0910.5451

One-dimensional case

Forward iteration

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$

n-th iterate of
$$f$$
 $f_n = \underbrace{f \circ \ldots \circ f}_{n \ times}$

By **Schwarz's lemma**, f is a contraction in the pseudo-hyperbolic metric

$$d(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if
$$p \in \mathbb{D}$$
, then $f(p) = p$ and $|f'(p)| < 1$

if $p \in \partial \mathbb{D}$, then f(p) = p and $0 < f'(p) \le 1$ in the sense of non-tangential limits

The point p is called the **Denjoy-Wolff point** of f.

Cases:

 $1.p \in \mathbb{D}$ f is called elliptic

 $2.p \in \partial \mathbb{D}$, f'(p) < 1 hyperbolic

 $3.p \in \partial \mathbb{D}$, f'(p) = 1 parabolic

If $p \in \partial \mathbb{D}$, **Julia's lemma** holds for the point p, and multiplier $c = f'(p) \leq 1$:

$$\forall R > 0 \quad f(H(p,R)) \subseteq H(p,cR),$$

where H(p,R) is a horocycle at $p\in\partial\mathbb{D}$ of radius R :

$$H(p,R) := \left\{ z \in \mathbb{D} : \frac{|p-z|^2}{1-|z|^2} < R \right\}$$

Backward iteration

Backward-iteration sequence:

$$\{z_n\}_{n=0}^{\infty}$$
, $f(z_{n+1}) = z_n$ for $n = 0, 1, 2...$

The sequence $d(z_n, z_{n+1})$ is increasing, so we need a bound on the pseudo-hyperbolic step:

$$d(z_n, z_{n+1}) \le a < 1$$

Theorem (Poggi-Corradini, 2003)

Let $\{z_n\}_{n=0}^{\infty}$ be a backward-iteration sequence for analytic self-map of the disk f with bounded pseudo-hyperbolic step $d(z_n, z_{n+1}) \leq a < 1$. Then:

- 1. $z_n \to q \in \partial \mathbb{D}$, and q is a fixed point with a well-defined multiplier $f'(q) < \infty$
- 2. If $q \neq p$, then q is a **boundary repelling** fixed point (BRFP) (i.e. f'(q) > 1). If q = p, f is of parabolic type.
- 3. When q is BRFP, the convergence $z_n \rightarrow q$ is non-tangential.
- 4. If q = p, then $w_n \to q$ tangentially.

Multi-dimensional case

$$\mathbb{C}^N$$
, inner product $(Z,W)=\sum\limits_{j=1}^N Z_j\overline{W_j}$ $\|Z\|^2=(Z,Z)$

Unit ball
$$\mathbb{B}^N=\{Z\in\mathbb{C}^N:\|Z\|<1\}$$

Julia's lemma in \mathbb{B}^N :

Let f be a holomorphic self-map of \mathbb{B}^N and $X\in\partial\mathbb{B}^N$ such that

$$\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty$$

Then there exists a unique $Y \in \partial \mathbb{B}^N$ such that $\forall R > 0 \ f(H(X,R)) \subset H(Y,\alpha R)$.

Horosphere of center $X \in \partial \mathbb{B}^N$ and radius R > 0:

$$H(X,R) = \left\{ Z \in \mathbb{B}^N : \frac{|1 - (Z,X)|^2}{1 - ||Z||^2} < R \right\}$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N , then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0,1]$ is a multiplier of f at p.

f is called hyperbolic if c < 1 and parabolic if c = 1.

Siegel domain:

$$\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : Rez > ||w||^2\}$$

Cayley transform: $\mathcal{C}: \mathbb{B}^N \to \mathbb{H}^N$

$$C((z,w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right)$$

$$C^{-1}((z,w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$$

Theorem 1. Let f be a analytic self-map of \mathbb{B}^N of hyperbolic type (with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$), $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{R}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

- 1. There exists a point $\partial \mathbb{B}^N \ni \tau \neq p$ such that $Z_n \xrightarrow[n \to \infty]{} \tau$
- 2. $\{Z_n\}$ stays in a Koranyi region
- 3. Julia's lemma holds for τ with multiplier $\alpha \geq \frac{1}{c}$, where c is the multiplier at p.

Since $\alpha \geq \frac{1}{c} > 1$, the point $q \in \partial \mathbb{B}^N$ is called the **boundary repelling fixed point** (BRFP) for f.

Characterization of BRFP in terms of backward-iteration sequences: Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

Conjugations

1-dimensional case, forward iteration (Valiron, 1931):

$$\psi \circ f = \frac{1}{c}\psi,$$

where $\psi: \mathbb{D} \to \mathbb{H}$ is an analytic map to a half-plane.

1-dimensional case, backward iteration (Poggi-Corradini, 2000): an analytic self-map of the unit disc \mathbb{D} f with BRFP $1 \in \partial \mathbb{D}$ and multiplier α at 1 can be conjugated to the automorphism $\eta(z) = (z-a)/(1-az)$, where $a = (\alpha - 1)/(\alpha + 1)$:

$$\psi \circ \eta(z) = f \circ \psi(z),$$

via an analytic map ψ of $\mathbb D$ with $\psi(\mathbb D)\subseteq \mathbb D$, which has non-tangential limit 1 at 1.

N-dimensional case, forward iteration (Bracci, Gentili, Poggi-Corradini): conjugation to a multiplication via $\psi: \mathbb{B}^N \to \mathbb{H}$.

(Bracci, Gentili, 2005): f is conjugated to its linear part, assuming some regularity at the Denjoy-Wolff point.

Theorem 2. Suppose $f: \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function of hyperbolic type and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha} w)$

$$\psi \circ \eta(Z) = f \circ \psi(Z),$$

via an analytic intertwining map $\psi.$

Construction of ψ :

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

$$\psi(z,w) = \psi(z,0)$$

and is essentially one-dimensional map.

Conjugation for expandable maps

Definition: An analytic map $f:\mathbb{H}^N \to \mathbb{H}^N$ is called **expandable** at 0 if

$$f(z,w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2})).$$

In particular, 0 is a fixed point of f and α is the multiplier of f at 0.

Theorem 3. Let f be expandable at 0, of hyperbolic type, and let the matrix A be diagonal, and WLOG

$$|a_{j,j}| = \sqrt{\alpha}$$
 for $j = 1 \dots L$

$$|a_{j,j}| < \sqrt{\alpha}$$
 for $j = L + 1 \dots N - 1$.

Then f is conjugated to the automorphism $\eta(z,w)=(\alpha z,\Omega\sqrt{\alpha}w)$ (Ω is a rotation):

$$\psi \circ \eta(Z) = f \circ \psi(Z),$$

via an analytic intertwining map $\psi(z,w)=\psi(p_L(z,w))$, where p_L is a projection on the first L+1 dimensions.

Open questions

- 1. "Best possible" intertwining map
- 2. Number of BRFP
- 3. Uniqueness of the intertwining map
- 4. Parabolic and "elliptic" cases