		NAME:	
800:072 01	TEST	13 OC 06	R. B. Campbell
WORK ALONE		CALCULATO	DRS PERMITTED
Four pages — point values in margin — 100 points total			
Provide the best (closest) answer for each question.			

(5) 1. An experiment results in one of the three simple events
$$e_1$$
, e_2 , or e_3 . If $P(e_1) = 0.3$ and $P(e_2) = 0.6$, what is $P(e_3)$?

- (a) 0.0
- (b) 0.1
- (c) 0.2
- (d) 0.3
- (e) 0.4
- (5) 2. An experiment results in one of the five simple events e_1 , e_2 , e_3 , e_4 , or e_5 with $P(e_1) = 0.1$, $P(e_2) = 0.3$, $P(e_3) = 0.2$, $P(e_4) = 0.3$, and $P(e_5) = 0.1$. If A consists of the simple events e_1 and e_3 , and B consists of the simple events e_3 , and e_5 ; $P(A \cup B) =$
 - (a) 0.2
 - (b) 0.4
 - (c) 0.6
 - (d) 0.8
 - (e) 1.0

(5) 3. If P(A) = 0.3, P(B) = 0.4, and $P(A \cup B) = 0.5$; P(AB) =

- (a) 0.1
- (b) 0.2
- (c) 0.3
- (d) 0.4
- (e) 0.5

4. If P(A) = 0.4, $P(A \cup B) = 0.6$, and P(AB) = 0.3; P(B) =

(a) 0.3

(5)

- (b) 0.4
- (c) 0.5
- (0) 0.0
- (d) 0.6
- (e) 0.7

(5) 5. If P(A) = 0.4, P(B) = 0.5, P(AB) = 0.3, and $P(A \cup B) = 0.6$; P(A|B) = 0.6

- (a) $\frac{3}{5}$
- (b) $\frac{4}{6}$
- (c) $\frac{3}{4}$
- (d) $\frac{4}{5}$
- (e) $\frac{5}{6}$

1

- (5) 6. Which of the following are necessary for mutually exclusive (disjoint) events?
 - (a) $P(A \cup B) = 1$
 - (b) $P(A \cap B) = 0$
 - (c) $P(A \cap B) = P(A)P(B)$
 - (d) a and b
 - (e) a and c
- (5) 7. Which of the following are necessary for independent events?
 - (a) $P(A \cup B) = 1$
 - (b) $P(A \cap B) = 0$
 - (c) $P(A \cap B) = P(A)P(B)$
 - (d) a and b
 - (e) a and c
- (5) 8. How many different ways can a president, vice-president, and secretary be chosen from a class of nine.
 - (a) 24
 - (b) 27
 - (c) 84
 - (d) 504
 - (e) 729

(5) 9. How many different ways can a committee of three be chosen from a class of nine?

- (a) 24
- (b) 27
- (c) 84
- (d) 504
- (e) 729

(5) 10. If three-fourths of the students in a large class get B's, what is the probability that exactly two out of three randomly chosen students get B's?

- (a) $\frac{1}{64}$
- (b) $\frac{3}{64}$
- (c) $\frac{9}{64}$
- (d) $\frac{27}{64}$
- (e) $\frac{81}{64}$

- (5) 11. If 15% of widgets are defective, what is the probability that two or fewer are defective in a box of ten widgets?
 - (a) 0.18
 - (b) 0.24
 - (c) 0.76
 - (d) 0.82
 - (e) 0.89
- (5) 12. If X is normally distributed with mean $\mu = 0$ and standard deviation $\sigma = 1$, what is the relative frequency of observations in the interval X < .7? (i.e., P(X < .7).)
 - (a) .24
 - (b) .3
 - (c) .48
 - (d) .52
 - (e) .76
- (5) 13. If X is normally distributed with mean $\mu = 0$ and standard deviation $\sigma = 1$, what number z_0 are 32% of the observations greater than?
 - (a) $z_0 = -.47$
 - (b) $z_0 = .37$
 - (c) $z_0 = .47$
 - (d) $z_0 = .53$
 - (e) $z_0 = .63$
- (5) 14. If the weights of students are normally distributed with a mean of 150 pounds and a standard deviation of 25 pounds ($\mu = 150$, $\sigma = 25$), what percent of students weigh between 140 and 170 pounds?
 - (a) 0.13
 - (b) 0.38
 - (c) 0.44
 - (d) 0.66
 - (e) 0.88
- (5) 15. If the weights of students are normally distributed with a mean of 150 pounds and a standard deviation of 25 pounds ($\mu = 150$, $\sigma = 25$), what weight are 20% (.20) of the students heavier than?
 - (a) 164
 - (b) 167
 - (c) 171
 - (d) 180
 - (e) 193

- (5) 16. If $\frac{1}{4}$ of men wear navy socks, what is the probability that 18 or more in a group of 64 are wearing navy socks? (Recall: $\sigma = \sqrt{np(1-p)}$.)
 - (a) 0.16
 - (b) 0.19
 - (c) 0.24
 - (d) 0.28
 - (e) 0.33
- (5) 17. If an experiment entails rolling a fair tetrahedral (four sided) die two times, how many equally likely outcomes are there?
 - (a) 4
 - (b) 7
 - (c) 8
 - (d) 10
 - (e) 16
- (5) 18. If the weights of people are normally distributed with a mean of 150 pounds and a standard deviation of 35 pounds, what is the probability that the total weight of 12 randomly chosen individuals is more than 2000 pounds?
 - (a) .025
 - (b) .05
 - (c) .075
 - (d) .1
 - (e) .125
- (5) 19. If X is a random variable with P(X = 1) = 0.4, P(X = 2) = 0.3, P(X = 3) = 0.2, and P(X = 4) = 0.1; what is $E[X](\mu_X)$?
 - (a) 1
 - (b) 1.5
 - (c) 2
 - (d) 2.5
 - (e) 4
- (5) 20. If a fair tetrahedral die (P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = .25) and a fair octahedral die (P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5) = P(X = 6) = P(X = 7) = P(X = 8) = .125) are rolled, what is the probability that the sum of the two dice is greater than or equal to ten?
 - (a) $\frac{2}{11}$
 - (b) $\frac{2}{12}$
 - (c) $\frac{1}{32}$
 - (d) $\frac{3}{32}$
 - () 32
 - (e) $\frac{3}{16}$