Parabolic dynamics in the disk and in the ball

Olena Ostapyuk

Department of Mathematics
University of Northern Iowa

AMS Spring Central Sectional Meeting
University of Kansas, Lawrence, KS
Outline of my Talk

1. Introduction
2. Parabolic case in the disk
3. Parabolic maps of the ball
4. Examples and Special Cases
Outline of my Talk

1. Introduction

2. Parabolic case in the disk

3. Parabolic maps of the ball

4. Examples and Special Cases
Outline of my Talk

1. Introduction

2. Parabolic case in the disk

3. Parabolic maps of the ball

4. Examples and Special Cases
Outline of my Talk

1. Introduction
2. Parabolic case in the disk
3. Parabolic maps of the ball
4. Examples and Special Cases
Let f be analytic self-map of $\mathbb{D} = \{ z : |z| < 1 \}$

n-th iterate of f $f_n = f \circ \ldots \circ f$

By Schwarz’s lemma, f is a contraction in the pseudo-hyperbolic metric

$$d(z, w) = \frac{|z - w|}{1 - \overline{w}z}$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \mathbb{D}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

If $p \in \mathbb{D}$, then $f(p) = p$ and $|f'(p)| < 1$

If $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \leq 1$ in the sense of non-tangential limits
Let f be analytic self-map of $\mathbb{D} = \{ z : |z| < 1 \}$

n-th iterate of f $f_n = f \circ \ldots \circ f$

By **Schwarz's lemma**, f is a contraction in the pseudo-hyperbolic metric

$$d(z, w) = \frac{|z - w|}{|1 - \overline{w}z|}$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \mathbb{D}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if $p \in \mathbb{D}$, then $f(p) = p$ and $|f'(p)| < 1$

if $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \leq 1$ in the sense of non-tangential limits
Let f be analytic self-map of $\mathbb{D} = \{ z : |z| < 1 \}$

n-th iterate of f $f_n = f \circ \ldots \circ f$ \(n \) times

By **Schwarz’s lemma**, f is a contraction in the pseudo-hyperbolic metric

$$d(z, w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

If $p \in \mathbb{D}$, then $f(p) = p$ and $|f'(p)| < 1$

If $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \leq 1$ in the sense of non-tangential limits.
Let f be analytic self-map of $\mathbb{D} = \{ z : |z| < 1 \}$

n-th iterate of f $f_n = f \circ \ldots \circ f$
n times

By **Schwarz’s lemma**, f is a contraction in the pseudo-hyperbolic metric

$$d(z, w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \mathbb{D}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p. If $p \in \mathbb{D}$, then $f(p) = p$ and $|f'(p)| < 1$ if $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \leq 1$ in the sense of non-tangential limits
The point p is called the **Denjoy-Wolff point** of f.

Cases:
1. $p \in \mathbb{D}$ f is called elliptic
2. $p \in \partial \mathbb{D}$, $f'(p) < 1$ hyperbolic
3. $p \in \partial \mathbb{D}$, $f'(p) = 1$ parabolic
The point p is called the **Denjoy-Wolff point** of f.

Cases:

1. $p \in \mathbb{D}$ f is called **elliptic**

2. $p \in \partial \mathbb{D}$, $f'(p) < 1$ **hyperbolic**

3. $p \in \partial \mathbb{D}$, $f'(p) = 1$ **parabolic**
The point p is called the **Denjoy-Wolff point** of f.

Cases:

1. $p \in \mathbb{D}$, f is called elliptic
2. $p \in \partial \mathbb{D}$, $f'(p) < 1$ hyperbolic
3. $p \in \partial \mathbb{D}$, $f'(p) = 1$ parabolic
The point p is called the **Denjoy-Wolff point** of f.

Cases:
1. $p \in \mathbb{D}$, f is called elliptic
2. $p \in \partial \mathbb{D}$, $f'(p) < 1$ hyperbolic
3. $p \in \partial \mathbb{D}$, $f'(p) = 1$ parabolic
The point \(p \) is called the **Denjoy-Wolff point** of \(f \).

Cases:

1. \(p \in \mathbb{D} \) \(f \) is called **elliptic**

2. \(p \in \partial\mathbb{D}, f'(p) < 1 \) **hyperbolic**

3. \(p \in \partial\mathbb{D}, f'(p) = 1 \) **parabolic**

![Elliptic, Hyperbolic, Parabolic diagrams](image.png)
Parabolic case in the disk (or half-plane)

Consider a forward orbit

\[z_n = f_n(z_0) := f \circ \ldots \circ f(z_0) \]

By Schwarz’s lemma \(d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n) \), and the pseudo-hyperbolic step \(d_n := d(z_n, z_{n+1}) \) must have a limit:

\[d_n \xrightarrow{n \to \infty} b \]

Definition

We will call a sequence \(\{z_n\} \) a zero step (resp. non-zero step) sequence if \(b = 0 \) (resp. \(b > 0 \)).

Another model: right-half plane \(\mathbb{H} := \{z \mid \text{Re } z > 0\} \), biholomorphically equivalent to the unit disk \(\mathbb{D} \).
Parabolic case in the disk (or half-plane)

Consider a forward orbit

\[z_n = f_n(z_0) := f \circ \ldots \circ f(z_0) \]

\(n \) times

By Schwarz's lemma \(d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n) \), and the **pseudo-hyperbolic step** \(d_n := d(z_n, z_{n+1}) \) must have a limit:

\[d_n \xrightarrow{n \to \infty} b \]

Definition

We will call a sequence \(\{z_n\} \) a zero step (resp. non-zero step) sequence if \(b = 0 \) (resp. \(b > 0 \)).

Another model: right-half plane \(\mathbb{H} := \{ z | \text{Re} \, z > 0 \} \), biholomorphically equivalent to the unit disk \(\mathbb{D} \).
Parabolic case in the disk (or half-plane)

Consider a forward orbit

\[z_n = f_n(z_0) := f \circ \ldots \circ f(z_0) \]

By Schwarz’s lemma \(d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n) \), and the \textbf{pseudo-hyperbolic step} \(d_n := d(z_n, z_{n+1}) \) must have a limit:

\[d_n \xrightarrow{n \to \infty} b \]

Definition

We will call a sequence \(\{z_n\} \) a \textbf{zero step (resp. non-zero step)} sequence if \(b = 0 \) (resp. \(b > 0 \)).

Another model: right-half plane \(\mathbb{H} := \{ z \mid \text{Re } z > 0 \} \), biholomorphically equivalent to the unit disk \(\mathbb{D} \).
Parabolic case in the disk (or half-plane)

Consider a forward orbit

\[z_n = f_n(z_0) := f \circ \ldots \circ f(z_0) \text{ \hspace{1cm} \text{n times}} \]

By Schwarz’s lemma \(d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n) \), and the\n**pseudo-hyperbolic step** \(d_n := d(z_n, z_{n+1}) \) must have a limit: \(d_n \xrightarrow{n \to \infty} b \)

Definition

We will call a sequence \(\{z_n\} \) a zero step (resp. non-zero step) sequence if \(b = 0 \) (resp. \(b > 0 \)).

Another model: right-half plane \(\mathbb{H} := \{z \mid \text{Re } z > 0\} \), biholomorphically equivalent to the unit disk \(\mathbb{D} \).
Theorem (Pommerenke)

Consider f a parabolic self-map of \mathbb{H} with Denjoy-Wolff point ∞, and define $z_n = x_n + iy_n := f_n(1)$,

$$g_n(z) := \frac{f_n(z) - iy_n}{x_n}.$$

Then the limit $g(z) = \lim_{n \to \infty} g_n(z)$ exists locally uniformly and

$$g(f(z)) = \phi(g(z)) \quad \forall z \in \mathbb{H},$$

and

- $\phi(z) = z + ib$ (vertical translation) if $\{z_n\}$ has non-zero step;
- $\phi(z) = z$ and $g(z) \equiv 1$ (trivial conjugation) if $\{z_n\}$ has zero step.
Theorem (Pommerenke)

Consider f a parabolic self-map of \mathbb{H} with Denjoy-Wolff point ∞, and define $z_n = x_n + iy_n := f_n(1)$,

$$g_n(z) := \frac{f_n(z) - iy_n}{x_n}.$$

Then the limit $g(z) = \lim_{n \to \infty} g_n(z)$ exists locally uniformly and

$$g(f(z)) = \phi(g(z)) \quad \forall z \in \mathbb{H},$$

and

- $\phi(z) = z + ib$ (vertical translation) if $\{z_n\}$ has non-zero step;
- $\phi(z) = z$ and $g(z) \equiv 1$ (trivial conjugation) if $\{z_n\}$ has zero step.
Theorem (Pommerenke)

Consider \(f \) a parabolic self-map of \(\mathbb{H} \) with Denjoy-Wolff point \(\infty \), and define \(z_n = x_n + iy_n := f_n(1) \),

\[
g_n(z) := \frac{f_n(z) - iy_n}{x_n}.
\]

Then the limit \(g(z) = \lim_{n \to \infty} g_n(z) \) exists locally uniformly and

\[
g(f(z)) = \phi(g(z)) \quad \forall z \in \mathbb{H},
\]

and

- \(\phi(z) = z + ib \) (vertical translation) if \(\{z_n\} \) has non-zero step;
- \(\phi(z) = z \) and \(g(z) \equiv 1 \) (trivial conjugation) if \(\{z_n\} \) has zero step.
Corollary 1.

The step does not depend on the choice of the sequence and depends on map only; i.e. for a given parabolic map either all orbits have zero step or all orbits have non-zero step.

Thus we can classify parabolic maps of the disk (or a half-plane) as parabolic zero-step and parabolic non-zero step maps.

Corollary 2.

In parabolic non-zero-step case in \(\mathbb{H} \),

\[
\arg z_n \xrightarrow{n \to \infty} \pm \frac{\pi}{2}
\]

i.e. orbits converge to the Denjoy-Wolff point tangentially to the boundary.
Corollary 1.

The step does not depend on the choice of the sequence and depends on map only; i.e. for a given parabolic map either all orbits have zero step or all orbits have non-zero step.

Thus we can classify parabolic maps of the disk (or a half-plane) as **parabolic zero-step** and **parabolic non-zero step** maps.

Corollary 2.

In parabolic non-zero-step case in \mathbb{H},

$$\arg z_n \xrightarrow{n \to \infty} \pm \frac{\pi}{2}$$

i.e. orbits converge to the Denjoy-Wolff point tangentially to the boundary.
Corollary 1.

The step does not depend on the choice of the sequence and depends on map only; i.e. for a given parabolic map either all orbits have zero step or all orbits have non-zero step.

Thus we can classify parabolic maps of the disk (or a half-plane) as **parabolic zero-step** and **parabolic non-zero step** maps.

Corollary 2.

In parabolic non-zero-step case in \mathbb{H},

$$\arg z_n \xrightarrow{n \to \infty} \pm \frac{\pi}{2}$$

i.e. orbits converge to the Denjoy-Wolff point tangentially to the boundary.
Theorem (Baker, Pommerenke)

Let f be parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists $h : \mathbb{H} \to \mathbb{C}$ such that

$$h(f(z)) = h(z) + 1 \quad \forall z \in \mathbb{H},$$

i.e. f is conjugated to a horizontal shift in the plane.

Orbits in parabolic zero-step case may converge tangentially as well as non-tangentially.

Conjecture 1.

Let f be a parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists direction $\theta \in [-\pi/2, \pi/2]$ such that for any orbit $\{z_n\}$

$$\arg z_n \xrightarrow[n \to \infty]{} \theta.$$
Theorem (Baker, Pommerenke)

Let f be parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists $h : \mathbb{H} \to \mathbb{C}$ such that

$$h(f(z)) = h(z) + 1 \quad \forall z \in \mathbb{H},$$

i.e. f is conjugated to a horizontal shift in the plane.

Orbits in parabolic zero-step case may converge tangentially as well as non-tangentially.

Conjecture 1.

Let f be a parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists direction $\theta \in [-\pi/2, \pi/2]$ such that for any orbit $\{z_n\}$

$$\arg z_n \xrightarrow[n\to\infty]{} \theta.$$
Theorem (Baker, Pommerenke)

Let f be parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists $h : \mathbb{H} \to \mathbb{C}$ such that

$$h(f(z)) = h(z) + 1 \quad \forall z \in \mathbb{H},$$

i.e. f is conjugated to a horizontal shift in the plane.

Orbits in parabolic zero-step case may converge tangentially as well as non-tangentially.

Conjecture 1.

Let f be a parabolic zero-step map of \mathbb{H} with Denjoy-Wolff point infinity, then there exists direction $\theta \in [-\pi/2, \pi/2]$ such that for any orbit $\{z_n\}$

$$\arg z_n \xrightarrow{n \to \infty} \theta.$$
Multi-dimensional case

f is self-map of N-dimensional unit ball $\mathbb{B}^N = \{Z \in \mathbb{C}^N : \|Z\| < 1\}$.

Schwarz’s lemma still holds in \mathbb{B}^N, with pseudo-hyperbolic distance defined as

$$d_{\mathbb{B}^N}(Z, W) := \left(\frac{|1 - \langle Z, W \rangle|^2}{(1 - \|Z\|^2)(1 - \|W\|^2)} \right)^{1/2}.$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (Hervé, MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N, then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of f at p.

f is called **hyperbolic** if $c < 1$ and **parabolic** if $c = 1$.
Multi-dimensional case

\(f \) is self-map of \(N \)-dimensional unit ball \(\mathbb{B}^N = \{ Z \in \mathbb{C}^N : \|Z\| < 1 \} \).

Schwarz’s lemma still holds in \(\mathbb{B}^N \), with pseudo-hyperbolic distance defined as

\[
d_{\mathbb{B}^N}(Z, W) := \left(\frac{|1 - \langle Z, W \rangle|^2}{(1 - \|Z\|^2)(1 - \|W\|^2)} \right)^{1/2}.
\]

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (Hervé, MacCluer, 1983)

If \(f \) has no fixed points in \(\mathbb{B}^N \), then \(f_n \) converges uniformly on compacta to \(p \in \partial \mathbb{B}^N \), the number \(c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1] \) is a multiplier of \(f \) at \(p \).

\(f \) is called **hyperbolic** if \(c < 1 \) and **parabolic** if \(c = 1 \).
Multi-dimensional case

f is self-map of N-dimensional unit ball $\mathbb{B}^N = \{ Z \in \mathbb{C}^N : \|Z\| < 1 \}$. **Schwarz’s lemma** still holds in \mathbb{B}^N, with pseudo-hyperbolic distance defined as

$$d_{\mathbb{B}^N}(Z, W) := \left(\frac{|1 - \langle Z, W \rangle|^2}{(1 - \|Z\|^2)(1 - \|W\|^2)} \right)^{1/2}.$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (Hervé, MacCluer, 1983)

*If f has no fixed points in \mathbb{B}^N, then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \lim \inf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of f at p. f is called **hyperbolic** if $c < 1$ and **parabolic** if $c = 1$.***
An analog of the half-plane \mathbb{H} in several dimensions is

Siegel domain (or Siegel half-space)

$$\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : \Re z > \|w\|^2\},$$

which is biholomorphically equivalent to \mathbb{B}^N via

Cayley transform:

$$C : \mathbb{B}^N \rightarrow \mathbb{H}^N$$

$$C((z, w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right) \quad C^{-1}((z, w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right).$$
An analog of the half-plane \mathbb{H} in several dimensions is

Siegel domain (or Siegel half-space)

$$\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : \text{Re} z > \|w\|^2\},$$

which is biholomorphically equivalent to \mathbb{B}^N via

Cayley transform:

$$C : \mathbb{B}^N \rightarrow \mathbb{H}^N$$

$$C((z, w)) = \left(\frac{1 + z}{1 - z}, \frac{w}{1 - z}\right) \quad C^{-1}((z, w)) = \left(\frac{z - 1}{z + 1}, \frac{2w}{z + 1}\right).$$
For parabolic maps of the ball, zero and non-zero step cases are well-defined only for sequences.

The question whether the same map can have sequences of both types is still open.

Conjecture 2.

Let f a self map of \mathbb{B}^N of parabolic type. If the step $d_{\mathbb{B}^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0$ for some $Z_0 \in \mathbb{B}^N$, then $d_{\mathbb{B}^N}(f_n(Z), f_{n+1}(Z)) \to 0$ for all $Z \in \mathbb{B}^N$.
For parabolic maps of the ball, zero and non-zero step cases are well-defined only for sequences.

The question whether the same map can have sequences of both types is still open.

Conjecture 2.

Let f a self map of \mathbb{B}^N of parabolic type. If the step
\[d_{\mathbb{B}^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0 \text{ for some } Z_0 \in \mathbb{B}^N, \text{ then} \]
\[d_{\mathbb{B}^N}(f_n(Z), f_{n+1}(Z)) \to 0 \text{ for all } Z \in \mathbb{B}^N. \]
Definition

The Koranyi region $K(X, M)$ of vertex $X \in \partial \mathbb{B}^N$ and amplitude $M > 1$ is the set

$$K(X, M) = \left\{ Z \in \mathbb{B}^N \left| \frac{1 - \langle Z, X \rangle}{1 - \|Z\|} < M \right. \right\}.$$

When $N = 1$, it is the usual Stolz angle in the disk; but for $N > 1$ the region is tangent to the boundary of the ball along some directions.

Definition

For $X \in \partial \mathbb{B}^N$, a sequence $Z_n \rightarrow X$ is called special if

$$\lim_{n \rightarrow \infty} \frac{\|Z_n - \langle Z_n, X \rangle X\|^2}{1 - \|\langle Z_n, X \rangle X\|^2} = 0,$$

and restricted if it is special and its orthogonal projection $\langle Z_n, X \rangle X$ is non-tangential.
Definition

The **Koranyi region** $K(X, M)$ of vertex $X \in \partial \mathbb{B}^N$ and amplitude $M > 1$ is the set

$$K(X, M) = \left\{ Z \in \mathbb{B}^N \left| \frac{|1 - \langle Z, X \rangle|}{1 - \|Z\|} < M \right. \right\}.$$

When $N = 1$, it is the usual Stolz angle in the disk; but for $N > 1$ the region is tangent to the boundary of the ball along some directions.

Definition

For $X \in \partial \mathbb{B}^N$, a sequence $Z_n \to X$ is called **special** if

$$\lim_{n \to \infty} \frac{\|Z_n - \langle Z_n, X \rangle X\|^2}{1 - \|\langle Z_n, X \rangle X\|^2} = 0,$$

and **restricted** if it is special and its orthogonal projection $\langle Z_n, X \rangle X$ is non-tangential.
non-tangential \Rightarrow restricted \Rightarrow lies in a Koranyi region

Theorem (O.O.)

*If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \to 0$.***

In particular, every non-zero-step sequence must converge tangentially.
non-tangential ⇒ restricted ⇒ lies in a Koranyi region

Theorem (O.O.)

If the sequence of forward iterates \(\{ Z_n \}_{n=1}^{\infty} \) for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. \(d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \to 0 \).

In particular, every non-zero-step sequence must converge tangentially.
non-tangential ⇒ restricted ⇒ lies in a Koranyi region

Theorem (O.O.)

If the sequence of forward iterates \(\{Z_n\}_{n=1}^{\infty} \) for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e.
\[d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \to 0. \]

In particular, every non-zero-step sequence must converge tangentially.
Known examples

of parabolic maps in \mathbb{H}^N are:

Example 1: **Heisenberg translations**

$$(z, w) \mapsto (z + z_0 + 2\langle w, w_0 \rangle, w + w_0) \text{ for some } (z_0, w_0) \in \partial \mathbb{H}^N, \text{ i.e.} \quad \text{Re } z_0 = \|w_0\|^2.$$

They are parabolic automorphisms of \mathbb{H}^N and thus have non-zero step.

Example 2: **Generalized Heisenberg translations**

$$(z, w) \mapsto (z + z_0 + 2\langle w, w_0 \rangle, w + w_0) \text{ with } \text{Re } z_0 \geq \|w_0\|^2.$$

They have zero step unless $\text{Re } z_0 = \|w_0\|^2.$
Known examples

of parabolic maps in \mathbb{H}^N are:

Example 1: Heisenberg translations

$$(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0) \text{ for some } (z_0, w_0) \in \partial \mathbb{H}^N, \text{ i.e. } \Re z_0 = \| w_0 \|^2.$$

They are parabolic automorphisms of \mathbb{H}^N and thus have non-zero step.

Example 2: Generalized Heisenberg translations

$$(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0) \text{ with } \Re z_0 \geq \| w_0 \|^2.$$

They have zero step unless $\Re z_0 = \| w_0 \|^2.$
Example 3: **Parabolic linear-fractional maps of** \mathbb{H}^N

*(linear-fractional self-maps of the ball, transferred to \mathbb{H}^N).

$$f(Z) := \frac{AZ + B}{\langle Z, \overline{C} \rangle + d}$$

with $f(\mathbb{B}^N) \subseteq \mathbb{B}^N$, where A is $N \times N$-matrix, $B, C \in \mathbb{C}^N$ and $d \in \mathbb{C}$.

Theorem (Bayart)

Parabolic linear-fractional maps that do not fix any non-trivial affine subset of \mathbb{B}^N are conjugated to generalized Heisenberg translations.
Example 3: **Parabolic linear-fractional maps of** \mathbb{H}^N

(*linear-fractional self-maps of the ball, transferred to* \mathbb{H}^N).

\[f(Z) := \frac{AZ + B}{\langle Z, \overline{C} \rangle + d} \]

with $f(\mathbb{B}^N) \subseteq \mathbb{B}^N$, where A is $N \times N$-matrix, $B, C \in \mathbb{C}^N$ and $d \in \mathbb{C}$.

Theorem (Bayart)

Parabolic linear-fractional maps that do not fix any non-trivial affine subset of \mathbb{B}^N *are conjugated to generalized Heisenberg translations.*
Example 3: **Parabolic linear-fractional maps of** \mathbb{H}^N

(*linear-fractional self-maps of the ball, transferred to* $\mathbb{H}^N`).

\[f(Z) := \frac{AZ + B}{\langle Z, C \rangle + d} \]

with $f(B^N) \subseteq B^N$, where A is $N \times N$-matrix, $B, C \in \mathbb{C}^N$ and $d \in \mathbb{C}$.

Theorem (Bayart)

Parabolic linear-fractional maps that do not fix any non-trivial affine subset of B^N *are conjugated to generalized Heisenberg translations.*
Example 4. (O.O.):

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ.

Moreover, all forward orbits have zero (resp. non-zero) step, if ϕ is parabolic zero (resp. non-zero) step map.
Example 4. (O.O.):

Given one-dimensional \(\phi : \mathbb{H} \to \mathbb{H} \) of hyperbolic or parabolic type, with the Denjoy-Wolff point \(\infty \), construct \(f(z, w) := (\phi(z - w^2) + w^2, w) \). Then:

\(f \) is the self-map of \(\mathbb{H}^2 \) with the Denjoy-Wolff point \(\infty \) and has the same type and same multiplier at \(\infty \) as \(\phi \).

Moreover, all forward orbits have zero (resp. non-zero) step, if \(\phi \) is parabolic zero (resp. non-zero) step map.
Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞, construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then: f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ.
Moreover, all forward orbits have zero (resp. non-zero) step, if ϕ is parabolic zero (resp. non-zero) step map.
Example 4. (O.O.):

Given one-dimensional $\phi : \mathbb{H} \rightarrow \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ.

Moreover, all forward orbits have zero (resp. non-zero) step, if ϕ is parabolic zero (resp. non-zero) step map.
Example 4. (O.O.):

Given one-dimensional \(\phi : \mathbb{H} \to \mathbb{H} \) of hyperbolic or parabolic type, with the Denjoy-Wolff point \(\infty \), construct \(f(z, w) := (\phi(z - w^2) + w^2, w) \). Then:

- \(f \) is the self-map of \(\mathbb{H}^2 \) with the Denjoy-Wolff point \(\infty \) and has the same type and same multiplier at \(\infty \) as \(\phi \).
- Moreover, all forward orbits have zero (resp. non-zero) step, if \(\phi \) is parabolic zero (resp. non-zero) step map.
Example 5. (O.O.):

Given one-dimensional \(\phi : \mathbb{H} \to \mathbb{H} \) of parabolic type, with the Denjoy-Wolff point \(\infty \), construct

\[
f(z, w) := (\phi(z) + z_0 + 2 \langle w, w_0 \rangle, w + w_0)
\]

for some \((z_0, w_0) \in \partial \mathbb{H}^N \).

Then \(f \) is the self-map of \(\mathbb{H}^N \) with the Denjoy-Wolff point \(\infty \) of parabolic type.
Example 5. (O.O.):

Given one-dimensional \(\phi : \mathbb{H} \to \mathbb{H} \) of parabolic type, with the Denjoy-Wolff point \(\infty \), construct

\[
f(z, w) := (\phi(z) + z_0 + 2 \langle w, w_0 \rangle, w + w_0)
\]

for some \((z_0, w_0) \in \partial \mathbb{H}^N\).

Then \(f\) is the self-map of \(\mathbb{H}^N \) with the Denjoy-Wolff point \(\infty \) of parabolic type.
Example 6. (Bayart) **Maps with some regularity at the Denjoy-Wolff point**

\[D^{n+\varepsilon} : \text{parabolic maps of } \mathbb{B}^2 \text{ that can be expanded near the Denjoy-Wolff point up to a certain order.} \]

Depending on \(n \) and the first derivative matrix, they can be conjugated to various generalized Heisenberg translations, in particular:

- If \(n = 5 \) and the matrix is non-diagonalizable, model map is
 \[(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)\]
- If \(n = 6 \) and the matrix is diagonalizable, model map is \(z \mapsto z + b \)
Example 6. (Bayart) **Maps with some regularity at the Denjoy-Wolff point**

\[D^{n+\varepsilon} : \text{parabolic maps of } \mathbb{B}^2 \text{ that can be expanded near the Denjoy-Wolff point up to a certain order.} \]

Depending on \(n \) and the first derivative matrix, they can be conjugated to various generalized Heisenberg translations, in particular:

- If \(n = 5 \) and the matrix is non-diagonalizable, model map is
 \[(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0) \]
- If \(n = 6 \) and the matrix is diagonalizable, model map is \(z \mapsto z + b \)
Example 6. (Bayart) **Maps with some regularity at the Denjoy-Wolff point**

\[D^{n+\varepsilon} : \text{parabolic maps of } \mathbb{B}^2 \text{ that can be expanded near the Denjoy-Wolff point up to a certain order.} \]

Depending on \(n \) and the first derivative matrix, they can be conjugated to various generalized Heisenberg translations, in particular:

- If \(n = 5 \) and the matrix is non-diagonalizable, model map is
 \[(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)\]
- If \(n = 6 \) and the matrix is diagonalizable, model map is
 \[z \mapsto z + b\]
Thank you!