Backward iteration in the unit ball

Olena Ostapyuk

Department of Mathematics
Kansas State University

Analysis/PDE Seminar
Texas A&M University
Outline of my Talk

1. One-dimensional case
 - Forward iteration
 - Backward iteration

2. Multi-dimensional case
 - Preliminaries
 - Main result and examples

3. Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball

4. Parabolic case

5. Future goals
Outline of my Talk

1. One-dimensional case
 - Forward iteration
 - Backward iteration

2. Multi-dimensional case
 - Preliminaries
 - Main result and examples

3. Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball

4. Parabolic case

5. Future goals
Outline of my Talk

1. One-dimensional case
 - Forward iteration
 - Backward iteration

2. Multi-dimensional case
 - Preliminaries
 - Main result and examples

3. Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball

4. Parabolic case

5. Future goals
Outline of my Talk

1. One-dimensional case
 - Forward iteration
 - Backward iteration

2. Multi-dimensional case
 - Preliminaries
 - Main result and examples

3. Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball

4. Parabolic case

5. Future goals
Outline of my Talk

1. One-dimensional case
 - Forward iteration
 - Backward iteration

2. Multi-dimensional case
 - Preliminaries
 - Main result and examples

3. Conjugations
 - Overview
 - Conjugations near BRFP in the unit ball

4. Parabolic case

5. Future goals
One-dimensional case
Forward iteration

Let f be analytic self-map of $\mathbb{D} = \{ z : |z| < 1 \}$

n-th iterate of f $f_n = f \circ \ldots \circ f$

n times

By Schwarz’s lemma, f is a contraction in the pseudo-hyperbolic metric

$$d(z, w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

If $p \in \mathbb{D}$, then $f(p) = p$ and $|f'(p)| < 1$

If $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \leq 1$ in the sense of non-tangential limits
One-dimensional case
Forward iteration

Let f be analytic self-map of $\mathbb{D} = \{ z : |z| < 1 \}$

n-th iterate of f $f_n = f \circ \ldots \circ f$ n times

By Schwarz’s lemma, f is a contraction in the pseudo-hyperbolic metric

$$d(z, w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

If $p \in \mathbb{D}$, then $f(p) = p$ and $|f'(p)| < 1$

If $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \leq 1$ in the sense of non-tangential limits
One-dimensional case
Forward iteration

Let f be analytic self-map of $\mathbb{D} = \{z : |z| < 1\}$

n-th iterate of f $f^n = f \circ \ldots \circ f$ \quad \text{n times}

By Schwarz's lemma, f is a contraction in the pseudo-hyperbolic metric

$$d(z, w) = \frac{|z - w|}{1 - \overline{w}z}$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

if $p \in \mathbb{D}$, then $f(p) = p$ and $|f'(p)| < 1$

if $p \in \partial\mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \leq 1$ in the sense of non-tangential limits
One-dimensional case
Forward iteration

Let \(f \) be analytic self-map of \(\mathbb{D} = \{ z : |z| < 1 \} \)

n-th iterate of \(f \) \(f_n = f \circ ... \circ f \)

\(n \) times

By \textbf{Schwarz’s lemma}, \(f \) is a contraction in the pseudo-hyperbolic metric

\[
d(z, w) = \left| \frac{z - w}{1 - \overline{w}z} \right|
\]

\textbf{Theorem (Denjoy-Wolff)}

If a self-map of the disk \(f \) is not an elliptic automorphism, then there exist a unique point \(p \in \mathbb{D} \) such that the sequence \(f_n(z) \) converges uniformly on compact subsets to \(p \).

If \(p \in \mathbb{D} \), then \(f(p) = p \) and \(|f'(p)| < 1 \)

If \(p \in \partial \mathbb{D} \), then \(f(p) = p \) and \(0 < f'(p) \leq 1 \) in the sense of non-tangential limits
Let f be analytic self-map of $\mathbb{D} = \{ z : |z| < 1 \}$

n-th iterate of f $f_n = f \circ \ldots \circ f$

n times

By Schwarz’s lemma, f is a contraction in the pseudo-hyperbolic metric

$$d(z, w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

Theorem (Denjoy-Wolff)

If a self-map of the disk f is not an elliptic automorphism, then there exist a unique point $p \in \overline{\mathbb{D}}$ such that the sequence $f_n(z)$ converges uniformly on compact subsets to p.

If $p \in \mathbb{D}$, then $f(p) = p$ and $|f'(p)| < 1$

If $p \in \partial \mathbb{D}$, then $f(p) = p$ and $0 < f'(p) \leq 1$ in the sense of non-tangential limits
The point p is called the **Denjoy-Wolff point** of f.

Cases:
1. $p \in \mathbb{D}$ f is called elliptic
2. $p \in \partial \mathbb{D}$, $f'(p) < 1$ hyperbolic
3. $p \in \partial \mathbb{D}$, $f'(p) = 1$ parabolic
The point p is called the **Denjoy-Wolff point** of f.

Cases:
1. $p \in \mathbb{D}$, f is called **elliptic**

2. $p \in \partial \mathbb{D}$, $f'(p) < 1$ **hyperbolic**

3. $p \in \partial \mathbb{D}$, $f'(p) = 1$ **parabolic**
The point p is called the **Denjoy-Wolff point** of f.

Cases:

1. $p \in \mathbb{D}$, f is called elliptic

2. $p \in \partial \mathbb{D}$, $f'(p) < 1$ hyperbolic

3. $p \in \partial \mathbb{D}$, $f'(p) = 1$ parabolic
The point p is called the **Denjoy-Wolff point** of f.

Cases:
1. $p \in \mathbb{D}$ f is called elliptic

2. $p \in \partial \mathbb{D}$, $f'(p) < 1$ hyperbolic

3. $p \in \partial \mathbb{D}$, $f'(p) = 1$ parabolic

![Diagram of parabolic point](image)
The point p is called the **Denjoy-Wolff point** of f.

Cases:
1. $p \in \mathbb{D}$, f is called **elliptic**
2. $p \in \partial \mathbb{D}$, $f'(p) < 1$ hyperbolic
3. $p \in \partial \mathbb{D}$, $f'(p) = 1$ parabolic
If \(p \in \partial \mathbb{D} \), **Julia’s lemma** holds for the point \(p \), and multiplier \(c = f'(p) \leq 1 \):

\[
\forall R > 0 \quad f (H(p, R)) \subseteq H(p, cR),
\]

where \(H(p, R) \) is a horocycle at \(p \in \partial \mathbb{D} \) of radius \(R \):

\[
H(p, R) := \left\{ z \in \mathbb{D} : \frac{|p - z|^2}{1 - |z|^2} < R \right\}
\]
If \(p \in \partial \mathbb{D} \), Julia’s lemma holds for the point \(p \), and multiplier \(c = f'(p) \leq 1 \):

\[
\forall R > 0 \quad f(H(p, R)) \subseteq H(p, cR),
\]

where \(H(p, R) \) is a horocycle at \(p \in \partial \mathbb{D} \) of radius \(R \):

\[
H(p, R) := \left\{ z \in \mathbb{D} : \frac{|p - z|^2}{1 - |z|^2} < R \right\}
\]
If $p \in \partial \mathbb{D}$, **Julia’s lemma** holds for the point p, and multiplier $c = f'(p) \leq 1$:

$$\forall R > 0 \quad f(H(p, R)) \subseteq H(p, cR),$$

where $H(p, R)$ is a horocycle at $p \in \partial \mathbb{D}$ of radius R:

$$H(p, R) := \left\{ z \in \mathbb{D} : \frac{|p - z|^2}{1 - |z|^2} < R \right\}$$
Backward iteration

Backward-iteration sequence: \(\{z_n\}_{n=0}^{\infty}, f(z_{n+1}) = z_n \)

Not always exists: \(f(z) = cz, |c| < 1 \) has no backward iteration sequences.

By Schwarz’s lemma, \(d(z_{n+1}, z_n) \geq d(z_n, z_{n-1}) \) \(\forall n \), so
\(d_n := d(z_{n+1}, z_n) \nearrow. \)

We need additional condition on sequence to converge:

\[d(z_{n+1}, z_n) \leq a < 1 \quad \forall n \]

(the pseudo-hyperbolic step must be bounded above).
Backward iteration

Backward-iteration sequence: \(\{z_n\}_{n=0}^{\infty}, f(z_{n+1}) = z_n \)

Not always exists: \(f(z) = cz, |c| < 1 \) has no backward iteration sequences.

By Schwarz’s lemma, \(d(z_{n+1}, z_n) \geq d(z_n, z_{n-1}) \ \forall n \), so \(d_n := d(z_{n+1}, z_n) \nearrow \).

We need additional condition on sequence to converge:

\[d(z_{n+1}, z_n) \leq a < 1 \ \forall n \]

(the pseudo-hyperbolic step must be bounded above).
Backward iteration

Backward-iteration sequence: \(\{ z_n \}_{n=0}^{\infty}, f(z_{n+1}) = z_n \)

Not always exists: \(f(z) = cz, \ |c| < 1 \) has no backward iteration sequences.

By Schwarz’s lemma, \(d(z_{n+1}, z_n) \geq d(z_n, z_{n-1}) \ \forall n \), so \(d_n := d(z_{n+1}, z_n) \uparrow \).

We need additional condition on sequence to converge:

\[
d(z_{n+1}, z_n) \leq a < 1 \ \forall n
\]

(the pseudo-hyperbolic step must be bounded above).
Backward iteration

Backward-iteration sequence: \(\{z_n\}_{n=0}^{\infty}, f(z_{n+1}) = z_n \)

Not always exists: \(f(z) = cz, |c| < 1 \) has no backward iteration sequences.

By Schwarz’s lemma, \(d(z_{n+1}, z_n) \geq d(z_n, z_{n-1}) \forall n \), so \(d_n \defeq d(z_{n+1}, z_n) \nearrow \).

We need additional condition on sequence to converge:

\[
d(z_{n+1}, z_n) \leq a < 1 \quad \forall n
\]

(the pseudo-hyperbolic step must be bounded above).
Theorem (Poggi-Corradini, 2003)

Let \(\{z_n\}_{n=0}^{\infty} \) be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk \(f \) with bounded pseudo-hyperbolic step \(d(z_n, z_{n+1}) \leq a < 1 \). Then:
Theorem (Poggi-Corradini, 2003)

Let \(\{z_n\}_{n=0}^{\infty} \) be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk \(f \) with bounded pseudo-hyperbolic step \(d(z_n, z_{n+1}) \leq a < 1 \). Then:

- The sequence converges to the point on the boundary \(q \in \partial \mathbb{D} \), and \(q \) is a fixed point with a well-defined derivative \(f'(q) < \infty \)
Theorem (Poggi-Corradini, 2003)

Let \(\{z_n\}_{n=0}^{\infty} \) be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk \(f \) with bounded pseudo-hyperbolic step \(d(z_n, z_{n+1}) \leq a < 1 \). Then:

- The sequence converges to the point on the boundary \(q \in \partial D \), and \(q \) is a fixed point with a well-defined derivative \(f'(q) < \infty \).

- If \(q \neq p \), then \(q \) is a **boundary repelling fixed point** (BRFP) (i.e. \(f'(q) > 1 \)). The convergence \(z_n \rightarrow q \) is non-tangential.
Theorem (Poggi-Corradini, 2003)

Let \(\{z_n\}_{n=0}^{\infty} \) be a backward-iteration sequence for analytic self-map (not an elliptic automorphism) of the disk \(f \) with bounded pseudo-hyperbolic step \(d(z_n, z_{n+1}) \leq a < 1 \). Then:

- The sequence converges to the point on the boundary \(q \in \partial \mathbb{D} \), and \(q \) is a fixed point with a well-defined derivative \(f'(q) < \infty \).

- If \(q \neq p \), then \(q \) is a boundary repelling fixed point (BRFP) (i.e. \(f'(q) > 1 \)). The convergence \(z_n \to q \) is non-tangential.

- If \(q = p \), then \(z_n \to q \) tangentially. It may happen only in parabolic case.
Multi-dimensional case

\[\mathbb{C}^N, \text{inner product} (Z, W) = \sum_{j=1}^{N} Z_j \overline{W}_j, \quad \|Z\|^2 = (Z, Z) \]

Unit ball \(\mathbb{B}^N = \{ Z \in \mathbb{C}^N : \|Z\| < 1 \} \)

Julia’s lemma in \(\mathbb{B}^N \)

Let \(f \) be a holomorphic self-map of \(\mathbb{B}^N \) and \(X \in \partial \mathbb{B}^N \) such that

\[\lim \inf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty \]

Then there exists a unique \(Y \in \partial \mathbb{B}^N \) such that \(\forall R > 0 \)

\[f(H(X, R)) \subset H(Y, \alpha R). \]
Multi-dimensional case

\[\mathbb{C}^N, \text{ inner product } (Z, W) = \sum_{j=1}^{N} Z_j W_j, \quad \|Z\|^2 = (Z, Z) \]

Unit ball \(\mathbb{B}^N = \{ Z \in \mathbb{C}^N : \|Z\| < 1 \} \)

Julia’s lemma in \(\mathbb{B}^N \)

Let \(f \) be a holomorphic self-map of \(\mathbb{B}^N \) and \(X \in \partial \mathbb{B}^N \) such that

\[\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty \]

Then there exists a unique \(Y \in \partial \mathbb{B}^N \) such that \(\forall R > 0 \)

\[f(H(X, R)) \subset H(Y, \alpha R) \]
Multi-dimensional case

\[\mathbb{C}^N, \text{ inner product } (Z, W) = \sum_{j=1}^{N} Z_j \overline{W}_j, \quad \|Z\|^2 = (Z, Z) \]

Unit ball \(\mathbb{B}^N = \{ Z \in \mathbb{C}^N : \|Z\| < 1 \} \)

Julia’s lemma in \(\mathbb{B}^N \)

Let \(f \) be a holomorphic self-map of \(\mathbb{B}^N \) and \(X \in \partial \mathbb{B}^N \) such that

\[\liminf_{Z \to X} \frac{1 - \|f(Z)\|}{1 - \|Z\|} = \alpha < \infty \]

*Then there exists a unique \(Y \in \partial \mathbb{B}^N \) such that \(\forall R > 0 \)

\(f(H(X, R)) \subset H(Y, \alpha R) \).
Horosphere of center \(X \in \partial B^N \) and radius \(R > 0 \):
\[
H(X, R) = \left\{ Z \in B^N : \frac{|1 - (Z, X)|^2}{1 - \|Z\|^2} < R \right\}
\]

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If \(f \) has no fixed points in \(B^N \), then \(f^n \) converges uniformly on compacta to \(p \in \partial B^N \), the number \(c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1] \) is a multiplier of \(f \) at \(p \).

*\(f \) is called **hyperbolic** if \(c < 1 \) and **parabolic** if \(c = 1 \).*

We will call \(f \) **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and \(f \) is not unitary of any slice (i.e. with \(\|f(Z)\| < \|Z\| \ \forall Z \in B^N \backslash \{0\} \)).
Horosphere of center $X \in \partial \mathbb{B}^N$ and radius $R > 0$:

$$H(X, R) = \left\{ Z \in \mathbb{B}^N : \frac{1 - (Z, X)^2}{1 - \|Z\|^2} < R \right\}$$

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If f has no fixed points in \mathbb{B}^N, then f_n converges uniformly on compacta to $p \in \partial \mathbb{B}^N$, the number $c := \lim \inf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1]$ is a multiplier of f at p.

f is called **hyperbolic** if $c < 1$ and **parabolic** if $c = 1$.

We will call f **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and f is not unitary of any slice (i.e. with $\|f(Z)\| < \|Z\| \ \forall Z \in \mathbb{B}^N \{0\}$).
Horosphere of center \(X \in \partial B^N \) and radius \(R > 0 \):
\[
H(X, R) = \left\{ Z \in B^N : \frac{|1 - (Z, X)|^2}{1 - \|Z\|^2} < R \right\}
\]

Multi-dimensional version of Denjoy-Wolff theorem holds:

Theorem (MacCluer, 1983)

If \(f \) has no fixed points in \(B^N \), then \(f_n \) converges uniformly on compacta to \(p \in \partial B^N \), the number \(c := \liminf_{Z \to p} \frac{1 - \|f(Z)\|}{1 - \|Z\|} \in (0, 1] \) is a multiplier of \(f \) at \(p \).

\(f \) is called **hyperbolic** if \(c < 1 \) and **parabolic** if \(c = 1 \).

We will call \(f \) **elliptic** if it has unique fixed point inside of the ball (WLOG fixed point is 0) and \(f \) is not unitary of any slice (i.e. with \(\|f(Z)\| < \|Z\| \quad \forall Z \in B^N \setminus \{0\} \)).
Siegel domain: $\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : \text{Re}z > \|w\|^2\}$

is biholomorphically equivalent to the unit ball \mathbb{B}^N via Cayley transform: $C : \mathbb{B}^N \rightarrow \mathbb{H}^N$

$C((z, w)) = \left(\frac{1+z}{1-z}, \frac{w}{1-z}\right)$ \quad $C^{-1}((z, w)) = \left(\frac{z-1}{z+1}, \frac{2w}{z+1}\right)$
Siegel domain: $\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : \Re(z) > \|w\|^2\}$
is biholomorphically equivalent to the unit ball \mathbb{B}^N via Cayley transform: $C : \mathbb{B}^N \to \mathbb{H}^N$

$C((z, w)) = \left(\frac{1 + z}{1 - z}, \frac{w}{1 - z}\right) \quad C^{-1}((z, w)) = \left(\frac{z - 1}{z + 1}, \frac{2w}{z + 1}\right)$
Siegel domain: $\mathbb{H}^N = \{(z, w) \in \mathbb{C} \times \mathbb{C}^{N-1} : \text{Re} z > \|w\|^2\}$
is biholomorphically equivalent to the unit ball \mathbb{B}^N via Cayley transform: $C : \mathbb{B}^N \to \mathbb{H}^N$

$C((z, w)) = \left(\frac{1 + z}{1 - z}, \frac{w}{1 - z} \right) \quad C^{-1}((z, w)) = \left(\frac{z - 1}{z + 1}, \frac{2w}{z + 1} \right)$
Crucial difference between \mathbb{D} and \mathbb{B}^N: all results and estimates are weaker in orthogonal dimensions.
Crucial difference between \mathbb{D} and \mathbb{B}^N: all results and estimates are weaker in orthogonal dimensions.

- Pseudo-hyperbolic disk is a Euclidean disk.
- Pseudohyperbolic ball is a Euclidean ellipsoid with $R > r$ and $\frac{R}{r} \to \infty$ as $z \to \partial \mathbb{B}^N$.

Olena Ostapyuk (K-State)
Theorem 1. (O —, 2010)

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:
Theorem 1. (O —, 2010)

Let f be a analytic self-map of B^N of hyperbolic or elliptic type, \{\(Z_n\)\} be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{B^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

1. There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_n \xrightarrow[n \to \infty]{} q$.
Theorem 1. (O —, 2010)

Let f be a analytic self-map of \mathbb{B}^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

1. There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_n \xrightarrow[n\to\infty]{} q$.

2. $\{Z_n\}$ stays in a Koranyi region with vertex q (Koranyi regions are weaker analogs of non-tangential regions in higher dimension).
Theorem 1. (O —, 2010)

Let f be an analytic self-map of B^N of hyperbolic or elliptic type, $\{Z_n\}$ be a backward-iteration sequence with bounded pseudo-hyperbolic step $d_{B^N}(Z_n, Z_{n+1}) \leq a < 1$. Then:

1. There exists a point q on the boundary of the ball (different from the Denjoy-Wolff point) such that $Z_n \xrightarrow[n \to \infty]{} q$.

2. $\{Z_n\}$ stays in a Koranyi region with vertex q (Koranyi regions are weaker analogs of non-tangential regions in higher dimension).

3. Julia's lemma holds for q with multiplier $\alpha \geq \frac{1}{c} > 1$, i.e. $f(H(q, R)) \subset H(q, \alpha R) \forall R > 0$.
Theorem 1.(O —, 2010)

Let \(f \) be a analytic self-map of \(\mathbb{B}^N \) of hyperbolic or elliptic type, \(\{Z_n\} \) be a backward-iteration sequence with bounded pseudo-hyperbolic step \(d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \leq a < 1 \). Then:

1. There exists a point \(q \) on the boundary of the ball (different from the Denjoy-Wolff point) such that \(Z_n \xrightarrow[n \to \infty]{} q \).

2. \(\{Z_n\} \) stays in a Koranyi region with vertex \(q \) (Koranyi regions are weaker analogs of non-tangential regions in higher dimension).

3. Julia’s lemma holds for \(q \) with multiplier \(\alpha \geq \frac{1}{c} > 1 \), i.e. \(f(H(q, R)) \subset H(q, \alpha R) \forall R > 0 \).

Definition

A point \(q \in \partial \mathbb{B}^N \) is called a boundary repelling fixed point if Julia’s lemma holds for \(q \) with multiplier \(\alpha > 1 \).
Idea of the proof in hyperbolic case:

\[t_n := \text{Re} \ z_n - \|w_n\|^2 \sim c^n \text{ (by Julia’s lemma)} \]

\[\|pr(Z_n) - pr(Z_{n+1})\| \leq C \sqrt{t_n} \sim c^{n/2} \]
Idea of the proof in hyperbolic case:

\[t_n := \text{Re} z_n - \| w_n \|^2 \sim c^n \] (by Julia’s lemma)

\[\| \text{pr}(Z_n) - \text{pr}(Z_{n+1}) \| \leq C \sqrt{t_n} \sim c^{n/2} \]
Idea of the proof in hyperbolic case:

\[t_n := \text{Re } z_n - \| w_n \|^2 \sim c^n \text{ (by Julia's lemma)} \]

\[\| \text{pr}(Z_n) - \text{pr}(Z_{n+1}) \| \leq C \sqrt{t_n} \sim c^{n/2} \]
In elliptic case we need the following

Lemma

Let \(f \) be a self-map of the unit ball \(\mathbb{B}^N \) fixing zero, not unitary on any slice. Fix \(r_0 > 0 \), define \(M(r) := \max \| f(r\mathbb{B}^N) \|, \ r \in [r_0, 1) \). Then there exists \(c < 1 \) such that

\[
\frac{1 - r}{1 - M(r)} \leq c \quad \forall r \in [r_0, 1)
\]
In elliptic case we need the following

Lemma

Let f be a self-map of the unit ball \mathbb{B}^N fixing zero, not unitary on any slice. Fix $r_0 > 0$, define $M(r) := \max \| f(r\mathbb{B}^N) \|$, $r \in [r_0, 1)$. Then there exists $c < 1$ such that

$$\frac{1 - r}{1 - M(r)} \leq c \quad \forall r \in [r_0, 1)$$
Idea of the proof in elliptic case:

\[t_n := 1 - \|Z_n\| \sim c^n \text{ (by lemma)} \]

\[\phi_n := \text{arc-length}\left(\frac{Z_n}{\|Z_n\|}, \frac{Z_{n+1}}{\|Z_{n+1}\|}\right) \sim \sqrt{t_n} \sim c^{n/2} \]
Idea of the proof in elliptic case:

\[t_n := 1 - \|Z_n\| \sim c^n \text{ (by lemma)} \]

\[\phi_n := \text{arc-length}(\frac{Z_n}{\|Z_n\|}, \frac{Z_{n+1}}{\|Z_{n+1}\|}) \sim \sqrt{t_n} \sim c^{n/2} \]
Idea of the proof in elliptic case:

\[t_n := 1 - \|Z_n\| \sim c^n \text{ (by lemma)} \]

\[\phi_n := \text{arc-length} \left(\frac{Z_n}{\|Z_n\|}, \frac{Z_{n+1}}{\|Z_{n+1}\|} \right) \sim \sqrt{t_n} \sim c^{n/2} \]
A BRFP with multiplier α is called isolated if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated (corollary of the theorem of Cowen and Pommerenke, 1982), so the above characterization is "if and only if".
A BRFP with multiplier α is called isolated if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated (corollary of the theorem of Cowen and Pommerenke, 1982), so the above characterization is "if and only if".
A BRFP with multiplier α is called isolated if it has a neighborhood with no other BRFPs with multiplier $\leq \alpha$.

In the hyperbolic and elliptic cases we have the following

Characterization of BRFP in terms of backward-iteration sequences:

Every backward-iteration sequence with bounded hyperbolic step converges to a BRFP; and if BRFP is isolated, then we can construct a backward-iteration sequence with bounded hyperbolic step that converges to it.

In 1-dimensional case all boundary fixed points are isolated (corollary of the theorem of Cowen and Pommerenke, 1982), so the above characterization is "if and only if".
Problem:

Unlike in 1-dimensional case, not all BRFP’s are isolated

Example 1. (O —, 2010):

\[f : \mathbb{H}^2 \to \mathbb{H}^2, \quad f(z, w) = (2z + w^2, w), \] hyperbolic with multiplier 1/2 at the Denjoy-Wolff point \(\infty \)

Iterates: \(f_n(z, w) = (2^n z + (2^n - 1)w^2, w) \)

Set of BRFP’s: \(\{(r^2, ir) | r \in \mathbb{R}\} \)
Problem:

Unlike in 1-dimensional case, not all BRFP’s are isolated

Example 1. (O —, 2010):

\[f : \mathbb{H}^2 \to \mathbb{H}^2, \quad f(z, w) = (2z + w^2, w), \text{ hyperbolic with multiplier } 1/2 \text{ at the Denjoy-Wolff point } \infty \]

Iterates: \[f_n(z, w) = (2^n z + (2^n - 1)w^2, w) \]
Set of BRFP’s: \(\{ (r^2, ir) | r \in \mathbb{R} \} \)
Problem:
Unlike in 1-dimensional case, not all BRFP's are isolated

Example 1. (O —, 2010):

\[f : \mathbb{H}^2 \to \mathbb{H}^2, \quad f(z, w) = (2z + w^2, w), \text{ hyperbolic with multiplier } \frac{1}{2} \text{ at the Denjoy-Wolff point } \infty \]

Iterates: \(f_n(z, w) = (2^n z + (2^n - 1)w^2, w) \)
Set of BRFP's: \(\{ (r^2, ir) \mid r \in \mathbb{R} \} \)
Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a **stable set at** q.

The stable set at each BRFP (r, ir^2) in the Example 1 is

$$\{(z, r) \mid \text{Re} z > r^2\}$$

and has dimension 1.

Conjecture

BRFPs in \mathbb{H}^N with stable set of dimension N are isolated.

(The conjecture is true for $N = 1$ since all BRFPs are isolated in 1-dimensional case).
Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP \(q \) a **stable set** at \(q \).

The stable set at each BRFP \((r, ir^2)\) in the Example 1 is \(\{(z, r) \mid \Re z > r^2\} \) and has dimension 1.

Conjecture

BRFPs in \(\mathbb{H}^N \) with stable set of dimension \(N \) are isolated.

(The conjecture is true for \(N = 1 \) since all BRFPs are isolated in 1-dimensional case).
Definition

We will call the union of all backward iteration sequences with bounded step tending to a BRFP q a **stable set** at q.

The stable set at each BRFP (r, ir^2) in the Example 1 is $\{(z, r) \mid \Re z > r^2\}$ and has dimension 1.

Conjecture

BRFPs in \mathbb{H}^N with stable set of dimension N are isolated.

(The conjecture is true for $N = 1$ since all BRFPs are isolated in 1-dimensional case).
(Semi) conjugations

Goal:

For self-map f of \mathbb{D} (or \mathbb{B}^N), solve an equation

$$\psi \circ f = \eta_f \circ \psi,$$

where $\psi : \mathbb{D} \to \Omega$ (resp. $\psi : \mathbb{B}^N \to \Omega$) is unknown holomorphic function to a complex manifold Ω, and η_f is a simple map (e.g. biholomorphism) of Ω.

Olena Ostapyuk (K-State)
Goal:

For self-map f of \mathbb{D} (or \mathbb{B}^N), solve an equation

$$\psi \circ f = \eta_f \circ \psi,$$

where $\psi : \mathbb{D} \to \Omega$ (resp. $\psi : \mathbb{B}^N \to \Omega$) is unknown holomorphic function to a complex manifold Ω, and η_f is a simple map (e.g. biholomorphism) of Ω.

\[\begin{array}{ccc}
\mathbb{D} & \xrightarrow{f} & \mathbb{D} \\
\downarrow \psi & & \downarrow \psi \\
\Omega & \xrightarrow{\eta_f} & \Omega
\end{array}\]
If f is elliptic with $f'(p) \neq 0$, then

$$
\psi \circ f = f'(p) \cdot \psi
$$

with $\psi : \mathbb{D} \rightarrow \mathbb{C}$.
Koenigs, 1884

If f *is elliptic with* $f'(p) \neq 0$, *then*

$$
\psi \circ f = f'(p) \cdot \psi
$$

with $\psi : \mathbb{D} \rightarrow \mathbb{C}$.

Böttcher, 1904

If f *is elliptic with* $f'(p) = 0$, *then*

$$
\psi \circ f = \psi^n
$$

with ψ *defined in a neighborhood of* p.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Condition</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koenigs</td>
<td>1884</td>
<td>f is elliptic with $f'(p) \neq 0$</td>
<td>$\psi \circ f = f'(p) \cdot \psi$ with $\psi : \mathbb{D} \rightarrow \mathbb{C}$.</td>
</tr>
<tr>
<td>Böttcher</td>
<td>1904</td>
<td>f is elliptic with $f'(p) = 0$</td>
<td>$\psi \circ f = \psi^n$ with ψ defined in a neighborhood of p.</td>
</tr>
<tr>
<td>Valiron</td>
<td>1913</td>
<td>f is hyperbolic with $f'(p) = c$</td>
<td>$\psi \circ f = \frac{1}{c} \cdot \psi$ with $\psi : \mathbb{D} \rightarrow \mathbb{H}$.</td>
</tr>
</tbody>
</table>
If f is \textit{parabolic}, then
\[\psi \circ f = \psi + 1 \]
with $\psi : \mathbb{D} \to \mathbb{H}$ (\textit{non-zero step case}) or $\psi : \mathbb{D} \to \mathbb{C}$ (\textit{zero step case}).
Pommerenke, Baker and Pommerenke, 1979

If \(f \) is parabolic, then

\[
\psi \circ f = \psi + 1
\]

with \(\psi : \mathbb{D} \rightarrow \mathbb{H} \) (non-zero step case) or \(\psi : \mathbb{D} \rightarrow \mathbb{C} \) (zero step case).

Poggi-Corradini, 2000 (backward iteration):

An analytic self-map of the unit disc \(\mathbb{D} \) \(f \) with BRFP \(1 \in \partial\mathbb{D} \) and multiplier \(\alpha \) at 1 can be conjugated to the automorphism \(\eta(z) = (z - a)/(1 - az) \), where \(a = (\alpha - 1)/(\alpha + 1) \):

\[
\psi \circ \eta(z) = f \circ \psi(z),
\]

via an analytic map \(\psi \) of \(\mathbb{D} \) with \(\psi(\mathbb{D}) \subseteq \mathbb{D} \), which has non-tangential limit 1 at 1.
Conjugations in several dimensions

Bracci, Gentili, Poggi-Corradini, 2010; hyperbolic case

Let $f : \mathbb{B}^N \rightarrow \mathbb{B}^N$ be a hyperbolic analytic self-map with Denjoy-Wolff point $p \in \partial \mathbb{B}^N$ and multiplier $c < 1$. If

1. There exists special sequence $f_n(Z_0) \rightarrow p$ and
2. the K-limit $\lim_{Z \rightarrow p} \frac{1 - \langle f(Z), p \rangle}{1 - \langle Z, p \rangle}$ exists,

then there is a non-constant analytic function $\psi : \mathbb{B}^N \rightarrow \mathbb{H}$ such that

$$\psi \circ f = \frac{1}{c} \cdot \psi$$
Theorem 2. (O —, 2009) (N-dimensional case, backward iteration)

Suppose \(f : \mathbb{H}^N \to \mathbb{H}^N \) is an analytic function and 0 is an isolated boundary repelling fixed point for \(f \) with multiplier \(1 < \alpha < \infty \). Then \(f \) is conjugated to the automorphism \(\eta(z, w) = (\alpha z, \sqrt{\alpha} w) \)

\[\psi \circ \eta(Z) = f \circ \psi(Z), \]

via an analytic intertwining map \(\psi \).

Construction of \(\psi \):

\[\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \} \]

where \(p_1(z, w) := (z, 0) \) is the projection on the first (radial) dimension, so

\[\psi(z, w) = \psi(z, 0) \]

and is essentially one-dimensional map.
Theorem 2. (O —, 2009) (N-dimensional case, backward iteration)

Suppose $f : \mathbb{H}^N \to \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha} w)$ via an analytic intertwining map ψ.

Construction of ψ:

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

$$\psi(z, w) = \psi(z, 0)$$

and is essentially one-dimensional map.
Theorem 2. (O —, 2009) (N-dimensional case, backward iteration)

Suppose $f : \mathbb{H}^N \rightarrow \mathbb{H}^N$ is an analytic function and 0 is an isolated boundary repelling fixed point for f with multiplier $1 < \alpha < \infty$. Then f is conjugated to the automorphism $\eta(z, w) = (\alpha z, \sqrt{\alpha} w)$

$$\psi \circ \eta(Z) = f \circ \psi(Z),$$

via an analytic intertwining map ψ.

Construction of ψ:

$$\psi = \lim_{n \to \infty} \{ f_n \circ \tau_n \circ p_1 \}$$

where $p_1(z, w) := (z, 0)$ is the projection on the first (radial) dimension, so

$$\psi(z, w) = \psi(z, 0)$$

and is essentially one-dimensional map.
The image of ψ in \mathbb{H}^N:
Corollary

Since image of ψ is always a subset of stable set, the dimension of stable set is at least 1.
Theorem 3. (O —, 2009)

Under some regularity condition, it is possible to improve ψ such that

$$\psi(z, w) = \psi(p_L(z, w)),$$

where p_L is a projection on the first L dimensions.

Condition is

$$f(z, w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2}))$$

e.g. $A = \text{Diag}(\sqrt{\alpha}, \ldots \sqrt{\alpha}, \beta_1, \ldots \beta_{N-L})$, where $\beta_j < \sqrt{\alpha}$
Theorem 3. (O —, 2009)

Under some regularity condition, it is possible to improve \(\psi \) such that

\[
\psi(z, w) = \psi(p_L(z, w)),
\]

where \(p_L \) is a projection on the first \(L \) dimensions.

Condition is

\[
f(z, w) = (\alpha z + o(|z|), Aw + o(|z|^{1/2}))
\]
e.g. \(A = \text{Diag} (\sqrt{\alpha}, \ldots \sqrt{\alpha}, \beta_1, \ldots \beta_{N-L}) \), where \(\beta_j < \sqrt{\alpha} \)
Parabolic case in the disk

Since $d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow{n \to \infty} b$

Subcases (do not depend on the choice of sequence):

- $b > 0$ parabolic non-zero step type
- $b = 0$ parabolic zero-step type
Parabolic case in the disk
Since \(d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n) \), pseudo-hyperbolic step \(d_n := d(z_n, z_{n+1}) \) must have limit: \(d_n \xrightarrow{n \to \infty} b \)

Subcases (do not depend on the choice of sequence):

\(b > 0 \) parabolic non-zero step type

\(b = 0 \) parabolic zero-step type
Parabolic case in the disk

Since $d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow{n \to \infty} b$

Subcases (do not depend on the choice of sequence):

- $b > 0$ parabolic non-zero step type
- $b = 0$ parabolic zero-step type
Parabolic case in the disk

Since \(d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n) \), pseudo-hyperbolic step
\(d_n := d(z_n, z_{n+1}) \) must have limit: \(d_n \xrightarrow{n \to \infty} b \)

Subcases (do not depend on the choice of sequence):

\(b > 0 \) parabolic non-zero step type

\(b = 0 \) parabolic zero-step type

non-zero step
tangentially
Parabolic case in the disk

Since $d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow{n \to \infty} b$

Subcases (do not depend on the choice of sequence):

$b > 0$ parabolic non-zero step type

$b = 0$ parabolic zero-step type
Parabolic case in the disk

Since $d(z_n, z_{n+1}) \leq d(z_{n-1}, z_n)$, pseudo-hyperbolic step $d_n := d(z_n, z_{n+1})$ must have limit: $d_n \xrightarrow{n \to \infty} b$

Subcases (do not depend on the choice of sequence):

$b > 0$ parabolic non-zero step type

$b = 0$ parabolic zero-step type

- **non-zero step**
 - tangentially

- **zero step**
 - radially

- **other: not known**
Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Open question

Is it true that if \(d_{B^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0 \) for some \(Z_0 \in B^N \), then \(d_{B^N}(f_n(Z), f_{n+1}(Z)) \to 0 \) for all \(Z \in B^N \)?

Claim

If the sequence of forward iterates \(\{Z_n\}_{n=1}^{\infty} \) for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e., \(d_{B^N}(Z_n, Z_{n+1}) \to 0 \). In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \(\mathbb{H}^N \) are:

- Automorphisms (translations):

 \[(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0) \text{ for some } (z_0, w_0) \in \partial \mathbb{H}^N. \]
Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Open question

Is it true that if $d_{B^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0$ for some $Z_0 \in B^N$, then $d_{B^N}(f_n(Z), f_{n+1}(Z)) \to 0$ for all $Z \in B^N$?

Claim

If the sequence of forward iterates $\{Z_n\}_{n=1}^\infty$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{B^N}(Z_n, Z_{n+1}) \to 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^N are:

- Automorphisms (translations):

 $(z, w) \mapsto (z + z_0 + 2\langle w, w_0 \rangle, w + w_0)$ for some $(z_0, w_0) \in \partial \mathbb{H}^N$.

Parabolic case in the ball: Zero and non-zero step cases are defined only for sequences.

Open question

Is it true that if $d_{\mathbb{B}^N}(f_n(Z_0), f_{n+1}(Z_0)) \to 0$ for some $Z_0 \in \mathbb{B}^N$, then $d_{\mathbb{B}^N}(f_n(Z), f_{n+1}(Z)) \to 0$ for all $Z \in \mathbb{B}^N$?

Claim

If the sequence of forward iterates $\{Z_n\}_{n=1}^{\infty}$ for parabolic self-map of the unit ball is restricted, then it must have zero step, i.e. $d_{\mathbb{B}^N}(Z_n, Z_{n+1}) \to 0$. In particular, non-zero-step sequence cannot converge non-tangentially.

The only known parabolic examples in \mathbb{H}^N are:

- Automorphisms (translations):

 $(z, w) \mapsto (z + z_0 + 2 \langle w, w_0 \rangle, w + w_0)$ for some $(z_0, w_0) \in \partial \mathbb{H}^N$.
Example 2. (O —, 2010):

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy_0,

construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

- f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ.
- f has a 1-dimensional real submanifold $\{(iy_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs.
• **Example 2. (O —, 2010):**

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP $i y_0$, construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

- f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ.
- f has a 1-dimensional real submanifold $\{(i y_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs.
• **Example 2. (O —, 2010):**

Given one-dimensional $\phi : \mathbb{H} \to \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy_0, construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

- f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ.
- f has a 1-dimensional real submanifold $\{(iy_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs.
Example 2. (O —, 2010):

Given one-dimensional \(\phi : \mathbb{H} \to \mathbb{H} \) of hyperbolic or parabolic type, with the Denjoy-Wolff point \(\infty \) and BRFP \(iy_0 \), construct \(f(z, w) := (\phi(z - w^2) + w^2, w) \). Then:

- \(f \) is the self-map of \(\mathbb{H}^2 \) with the Denjoy-Wolff point \(\infty \) and has the same type and same multiplier at \(\infty \) as \(\phi \).
- \(f \) has a 1-dimensional real submanifold \(\{(iy_0 + t^2, t) | t \in \mathbb{R} \} \) of BRFPs.
• **Example 2. (O —, 2010):**

Given one-dimensional $\phi : \mathbb{H} \rightarrow \mathbb{H}$ of hyperbolic or parabolic type, with the Denjoy-Wolff point ∞ and BRFP iy_0, construct $f(z, w) := (\phi(z - w^2) + w^2, w)$. Then:

- f is the self-map of \mathbb{H}^2 with the Denjoy-Wolff point ∞ and has the same type and same multiplier at ∞ as ϕ.
- f has a 1-dimensional real submanifold $\{(iy_0 + t^2, t) | t \in \mathbb{R}\}$ of BRFPs.
Future goals

• Dimension of stable set at the BRFP q

• Conjugation for non-isolated fixed points

• Parabolic case
Future goals

• Dimension of stable set at the BRFP q

• Conjugation for non-isolated fixed points

• Parabolic case
Future goals

• Dimension of stable set at the BRFP q

• Conjugation for non-isolated fixed points

• Parabolic case
Thank you!

http://arxiv.org/abs/0910.5451