- Instructor's Guide for D. Poole's Linear Algebra,
Brookes/Cole, (2005), ISBN 0-534-99861-5.
- Instructor's Guide for D. Poole's Linear Algebra
Second edition, Brooks/Cole | Cengage Learning, (2011) online access only.
*The geometry of minimal shape-preserving projections*, with B.L. Chalmers, Computers Math. Applic.**30**(1995), No. 3-6, 277-281.*Codimension one minimal projections onto the quadratics*: J. Approx. Theory,**85**(1996), 27-42.-
*A farthest-point characterization of the relative Chebyshev center*, with R. Huotari, Bull. Austral. Math. Soc.,**54**(1996), 27-33. *Minimal shape-preserving projections onto*, with B.L. Chalmers, Numer. Funct. Anal. and Optimiz.,**18**(1997), 507-520.*The Bernstein operator is the closest positive operator to a projection*, with B.L. Chalmers, D. Leviatan,*Approximation Theory IX, Volume 1: (Nashville, TN, 1998)*, 75-82, Vanderbilt University Press.*Existence of shape preserving A-action operators*, with B.L. Chalmers, Rocky Mountain J. Math.,**28**(1998), No. 3, 813-833.*Optimal interpolating spaces preserving shape*, with B.L. Chalmers, D. Leviatan, J. Approx. Theory,**98**(1999), 354-373.*On -convex preserving interpolation operators*, J. Approx. Theory**104**(2000), 77-89.*Constrained optimal location*, with R. Huotari, Numer. Funct. Anal. and Optimiz.**22**(1&2)(2001), 69-78.*Optimal location with convex constraints*, with R. Huotari and J. Ribando, Approximation Theory X: Abstract and Classical Analysis, (C.Chui, L. Schumaker, J. Stoeckler eds.), Vanderbilt Press (2002), 239-246.*On a constrained optimal location algorithm*, with R. Huotari, J. of Computational Analysis and Applications,**5**, No. 1, (2003).*Simplicial cones and the existence of shape-preserving cyclic operators*, Linear Algebra and its Applications,**375**(2003), 157-170.*Codimension-one minimal projections onto Haar subspaces*, with G. Lewicki, J. Approx. Theory,**127**(2004), 198-206.*A characterization and equations for minimal shape-preserving projections*, with B. Chalmers and D. Mupasiri, J. Approx. Theory,**138**(2006), 184 - 196.*A note on the existence of shape-preserving projections*, with D. Mupasiri, Rocky Mountain J. Math.,**37**(2007), No. 2, 573-585.*Minimal shape-preserving projections onto : Generalizations and Extensions*, with G. Lewicki, Numer. Funct. Anal. and Optimiz.,**27**(2006), No. 7-8, 847-874.*A Lower Bound of the Strongly Unique Minimal Projection Constant of ,*, with W. Odyniec, J. Approx. Theory,**145**(2007), No. 1, 111-121.*Minimal multi-convex projections*, with G. Lewicki, Studia Math.**178**(2007), No. 2, 99-124.*On Three Forgotten Results of S. Krein, N. Bogolyubov and V. Guarari with Applications to Bernstein Operators*, with W. Odyniec, Vestn. Syktyvkar Unin.,**1**(2007), 16-24.*On the difficulty of preserving monotonicity via projections and related results*, with D. Mupasiri, Jaen J. Approx.,**2**No. 1 (2010), 1-12.*Shape-preserving projections in tensor product spaces*, with G. Lewicki, J. Approx. Theory,**162**No. 5 (2010), 931-951.*Shape-preserving projections in low-dimensional settings and the -monotone case*, with I. Shevchuk, Ukrainian Math. J.,**5**(2012), 674-684.*Yet another generalization of a celebrated inequality of the Gamma function*, with E.M. Garcia-Caballero and S.G. Moreno, Amer. Math. Monthly**120**(2013), 821.*New Viete-Like Infinite Products of Nested Radicals with Fibonacci and Lucas Numbers*, with E.M. Garcia-Caballero and S.G. Moreno, The Fibonacci Quarterly,**52**(2014), no. 1, 27-31.*The Golden Ratio and Viete's Formula*, with E.M. Garcia-Caballero and S.G. Moreno, Teach. Math. Comp. Sci.,**12**(2014), no. 1, 43-54.*A complete view of Viete-like infinite products wwith Fibonacci and Lucas Numbers*, E.M. Garcia-Caballero and S.G. Moreno, Applied Mathematics and Computation,**247**(2014), 703-711.*New Gauss-Laguerre quadrature rules*, with E.M. Garcia-Caballero and S.G. Moreno, work in progress.*Minimal projections onto the lines*, with G. Lewicki, work in progress.

Michael Prophet 2015-04-30